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Abstract—In this paper, we describe an alternative approach
to design the internal model control (IMC) principle for feedback
active noise control (FBANC) by means of Laguerre filters. For
this, we discuss the adequate choice of the Laguerre parameter
and the filter order. It turns out that the Laguerre filter coeffi-
cients can be optimized in the same fashion as IMC designs that
utilize finite impulse response (FIR) filters. Furthermore, when
compared to FIR-based IMC designs, the proposed approach
also has the advantage that significantly fewer filter coefficients
need to be optimized. At the same time, the noise reduction
performance is on par with higher order FIR-based designs. In
terms of robust stability, our approach achieves good results in
both nominal and non-nominal scenarios.

Index Terms—Active Noise Control, Robust Feedback Control,
Filter Optimization, Filter Design, Laguerre Filter

I. INTRODUCTION

In modern headphones and headsets, active noise control
(ANC) is a well established technique to minimize disturbing
noise in the listener’s ears. Over time, numerous approaches
to ANC have been proposed that are based on open-loop con-
trol (feedforward) filters and both conventional and machine
learning-based signal processing methods [1], [2]. In particular
for sinusoidal noise, feedforward ANC (FFANC) achieves high
degrees of attenuation. However, FFANC requires a reference
signal to create the anti-noise signal and a sufficiently accurate
estimation of the acoustic system to be controlled. In addition,
signal processing must be performed with the least possible
delay [3]. In contrast, feedback (closed-loop control) ANC
(FBANC) generates the anti-noise signal directly by filtering
the error signal, which is ideally measured at the point where
the zone of silence needs to be generated [4]. A state-of-the-
art approach to parameterize robustly stable FBANC control
filters is the internal model control (IMC) principle [5], which
allows one to optimize the control filter coefficients with
respect to requirements regarding noise attenuation and robust
stability [6]. Typically, the control filter is a finite impulse
response (FIR) filter. However, at higher sampling rates, the
filter order has to be high in order to achieve sufficient noise
attenuation at lower frequencies. In this paper, we propose an
approach for the design of IMC filters that utilizes Laguerre
networks. In ANC research, the utilization of Laguerre filters
has already been investigated, but only for feedforward and
feedback filters without IMC topology [7], [8].

This paper is structured as follows: In Section II, we
discuss the key aspects of Laguerre filters and explain how to
choose the Laguerre parameter in the context of FBANC. In

Section III, we revisit the characterizing properties of the IMC
approach for FBANC. This is followed by Section IV, where
we describe the consolidation of the Laguerre filter approach
and the IMC filter structure. This includes a discussion of rele-
vant design parameters and the optimization procedure. Lastly,
in Section V, we evaluate a specific Laguerre filter design for
IMC-FBANC and compare the results to conventional FIR-
based IMC designs.

II. LAGUERRE FILTERS FOR FEEDBACK ANC
A. Laguerre Networks

In the conventional IMC filter design for FBANC, the
control filter Q is an FIR filter, which is optimized by
minimizing a cost function subject to constraints that ensure
robust stability and prescribed nominal performance. The cost
function directly depends on the frequency-wise summation of
the magnitude squared nominal sensitivity [6]:∣∣S(ejΩk)

∣∣2 =
∣∣∣1−Q(ejΩk)Ĝ(ejΩk)

∣∣∣2 , (1)

where Ĝ is the secondary path model and Ωk, k =
0, . . . , NΩ − 1 is the normalized discretized angular fre-
quency. Clearly, we have

∣∣S(ejΩk)
∣∣2 → 0 ,∀Ωk if Q(ejΩk) →

Ĝ−1(ejΩk), ∀Ωk with the optimum at Q(ejΩk) = Ĝ−1(ejΩk).
This only results in a stable solution if the model is minimum-
phase, which is not true for modeled systems with a certain
spatial distance between the secondary source (loudspeaker)
and the sensor (microphone). Additionally, robust stability
constraints may prevent Q from reaching the optimal value.
Therefore, the optimization of Q can be interpreted as the fol-
lowing system identification task: Find the coefficients of the
control filter Q under consideration of the robust stability and
noise reduction requirements such that the inverse minimum-
phase component of Ĝ(ejΩk) is best approximated. To ensure
good ANC performance, the order of the FIR filter has to be
chosen sufficiently high. Especially at higher sampling rates,
the order has to be large in order to achieve sufficient noise
attenuation at lower frequencies. To overcome this problem,
we propose to design Q as a Laguerre network. Generally,
for system identification problems, Laguerre networks offer
lower order filters than FIR with comparable approximation
errors [9]. Any discrete-time system Q0(z) with a specified
frequency response can be represented by the series

Q0(z) ≜ Q⋆
ℓ (z) =

∞∑
m=0

qm(α)Λm(z, α) , (2)
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where subscript ℓ indicates the Laguerre series representation
and Λm(z, α) is the z-Transform of a discrete-time Laguerre
polynomial [10], [11]:

Λm(z, α) =
√

1− α2
(z−1 − α)m

(1− αz−1)m+1
. (3)

α is called the Laguerre parameter, which can be chosen
arbitrarily within the open interval α ∈ (−1, 1). Note that
for the time being, we consider α to be real-valued. In fact,
when selecting α = 0, the entire network reduces to an M -th
order FIR filter. qm is the m-th Laguerre coefficient, which,
in general, can be obtained by integrating Q0(z)Λm(z−1, α)
over a closed contour Γ ∈ C:

qm(α) =

√
1− α2

2πj

∮
Γ

Q0(z)
(z − α)m

(1− αz)m+1

dz

z
. (4)

However, when modeling physical systems or designing
digital filters, an infinitely long response may cause computa-
tional difficulties. Thus, we use the truncated approximation
of Q⋆

ℓ (z), i.e.,

Q⋆
ℓ (z) ≈ Qℓ(z) =

M∑
m=0

qm(α)Λm(z, α) , (5)

where M is the order (number of stages) of the La-
guerre approximation. It becomes obvious that q(α) =
[q0(α), q1(α), . . . , qM (α)]T resembles transversal filter coef-
ficients and Λ(z, α) = [Λ0(z, α),Λ1(z, α), . . . ,ΛM (z, α), ]

T

can be interpreted as a generalized delay operator. In addition,
we might simply write Qℓ(z) = qTΛ(z, α). The series in
(5) can be realized as a filter network composed of all-pass
filters with a first-order low-pass filter as the input stage (see
Fig. 1). To obtain the frequency response, one can evaluate the
expression in (5) on the unit circle. That is, by using z = ejΩk

for k = 0, 1, . . . , NΩ − 1, we can write

Qℓ(e
jΩk) = qT(α)Λ(ejΩk , α) =

M∑
m=0

qm(α)Λm(ejΩk , α) .

(6)
The idea we propose here is to use the Laguerre network to
restructure the filter Q inside the IMC feedback control topol-
ogy. Therefore, we drop the dependency of the coefficients on
α. By explicitly choosing α ∈ (−1, 1), one can preset the pole
of the all-pass elements and the input low-pass filter. This will
be discussed in more detail in the next section.

eres

Qℓ

√
1−α2

1−αz−1
z−1−α
1−αz−1

z−1−α
1−αz−1

q0 q1 qM

u′

. . .

. . .

Fig. 1. Laguerre network with coefficients q = q0, q1, . . . , qM that resemble
a transversal filter of order M .
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Fig. 2. Mean values of the Wd-weighted nominal sensitivity spectrum.

B. Selecting the Laguerre Parameter

When using the Laguerre network in the classical filter
design context, the Laguerre parameter, i.e., the pole position
α, can be optimized in advance, based on the target system re-
sponse the Laguerre filter should reproduce. This is discussed,
for example, in [16]. In the context of feedback ANC using
IMC, however, there are different boundary conditions in the
sense that we want to minimize the sensitivity function as
much as possible given a secondary path model. In addition,
the filter complexity should be as small as possible. Usually,
the desired frequency range of noise control lies below 1 kHz.
Thus, we suggest to set α as close to 1 as possible. Since α
is the pole of the first-order low-pass filter in the Laguerre
sequence, a value close to 1 yields a strongly pronounced
low-pass characteristic. During optimization of the coefficients
qm ,m = 0, . . . ,M , this pre-emphasizes the transversal com-
ponent of the Laguerre filter on the lower frequency range. At
the same time, this pre-emphasis benefits the required filter
order in the sense that a lower order is required to achieve
the same low-pass shaped transfer function. To support this
statement, we conducted a preliminary investigation, where
we created (α,M)-pairs according to the Cartesian product
α×M , where α = {0, 0.25, 0.5, 0.75, 0.925, 0.95} and M =
{15, 31, 47, 63, 79, 95}. This resulted in 36 Laguerre control
filters Qℓ. To model the uncertainty, we used the convex set-
based approach presented in [14]. To assess the impact of dif-
ferent (α,M)-values, we evaluated the mean value of the ab-
solute weighted nominal sensitivity, i.e., |S(ejΩk)Wd(e

jΩk)|2,
across frequencies Ωk, where k = 0, . . . , NΩ−1. Note that
Wd(e

jΩk) is the same weighting that was used in the op-
timization. The results are shown in Fig. 2. Evidently, the
disturbance attenuation performance improves with increasing
α-value. More specifically, in the interval 0.75 ≤ α < 1, the
mean values converge to their respective minimum. Thus, it
has been verified that α should be chosen close to 1 to achieve
good noise attenuation.

III. FEEDBACK ACTIVE NOISE CONTROL MODEL

For the filter topology, we consider the feedback ANC
model given Fig. 3, where the controller, C, has a more refined
structure according to the IMC principle. That is, the feedback
controller includes an internal feedback path that contains a
model of the secondary path denoted by Ĝ, which provides
an estimate of the signal emitted by the loudspeaker into the
ear canal. Neglecting the impact of the ADC and DAC and
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Fig. 3. Block diagram of the feedback active noise control system with the
internal model filter topology of the controller C. The secondary path G(s)
is highlighted in blue.

using (6), the controller has the following transfer function
and frequency response, respectively:

C(z) =
Qℓ(z)

1−Qℓ(z)Ĝ(z)

z=ejΩk

=⇒ Qℓ(e
jΩk)

1−Qℓ(ejΩk)Ĝ(ejΩk)
, (7)

From robust control theory it is known that the feedback loop
can be characterized by the sensitivity function [12]

S(z) =
1−Qℓ(z)G(z)

1 +Qℓ(z)∆G(z)
, (8)

which is the transfer function from disturbance d to the error
e, and the complementary sensitivity function

T (z) =
Qℓ(z)G(z)

1 +Qℓ(z)∆G(z)
, (9)

which describes the transfer function from measurement noise
to the error signal. In this paper, we neglect the influence
of measurement noise. We will use the complementary sen-
sitivity function to assess the robust stability property of
the associated feedback control loop. Both in (8) and (9),
∆G(z) = G(z) − Ĝ(z) describes the model mismatch. In
the nominal case, where we have ∆G(z) = 0, the IMC
topology reduces to a feedforward configuration and we have
S0(z) = 1 − Qℓ(z)Ĝ(z) and T0(z) = Qℓ(z)Ĝ(z), where the
subscript zero indicates the nominal quantity. Lastly, (8) and
(9) are related by S(z) + T (z) = 1. This identity constitutes
the fundamental dilemma of control, which implies that S and
T cannot be made arbitrarily small at the same time. As shown
in [6], the synthesis of filter FIR filter Q with coefficient
vector qT = [q0, q1, . . . , qM ] can be formulated as a non-
linear convex optimization problem. The advantage here is
that performance requirements can be stated directly in the
frequency domain by means of discretized spectra. Adopting
this approach, the convex optimization problem may be stated
as follows:

min
q

1

NΩ

NΩ−1∑
k=0

∣∣∣[1−Qℓ(e
jΩk)Ĝ(ejΩk)

]
Wd(e

jΩk)
∣∣∣2 (10a)

s.t.
∣∣∣Qℓ(e

jΩk)Ĝ(ejΩk)Wχ
T (e

jΩk)
∣∣∣2 − 1 < 0 , (10b)∣∣∣[1−Qℓ(e

jΩk)Ĝ(ejΩk)
]
WS(e

jΩk)
∣∣∣2 − 1 < 0 , (10c)

where (10b) and (10c) apply for all k = 0, . . . , NΩ − 1 and
q ∈ RM+1. Since (6) is an affine function in q, the convexity
of the optimization problem is maintained [13]. Wd is a spec-
tral weighting representing the expected noise power spectrum.
WS is the nominal performance weight and allows to limit the
noise amplification due to the waterbed effect [12]. WT is a
weighting function characterizing the secondary path uncer-
tainty. Conventionally, it is modeled by the multiplicative un-
certainty model G̃(ejΩk) = Ĝ(ejΩk)

[
1 +WT (e

jΩk)∆(ejΩk)
]
,

where |∆(ejΩk)| ≤ 1, ∀Ωk and Ĝ(ejΩk) is the secondary path
model. For this paper, we use a rational system function of
the form

Ĝ(z) =

∑NG

µ=0 bµz
−µ

1 +
∑NG

ν=1 aνz
−ν

. (11)

This modeling approach creates disk-shaped uncertainty re-
gions with frequency-dependent radii around each point of
the model frequency response. The individual radii are deter-
mined by the maximum deviation of measured secondary path
responses from the secondary path model [12]. However, the
maximum achievable noise reduction is unnecessarily limited
by the assumption of disk-shaped distributed uncertainty. A
method to model the uncertainty more efficiently was re-
cently proposed in [14], where the uncertainty regions are
dynamically computed during filter optimization as frequency-
dependent convex sets surrounding the nominal open-loop
response L0(e

jΩk) = C(ejΩk ;Q) · Ĝ(ejΩk). Throughout this
paper, we will use this modeling approach and denote the
associated weight as Wχ

T (e
jΩk). As described in more detail

in [14], the uncertainty weight stems from the final iteration
of the algorithm. Another option to make the optimization
more efficient is to use a non-uniform discretization of the
unit circle, as proposed in [15]. This has the advantage to
allocate optimization resources to the frequency range where
feedback ANC is physically feasible.

IV. LAGUERRE FILTER OPTIMIZATION FOR IMC FBANC

A. Quantities used for Optimization

For the filter design, we choose a target sample rate of
fs = 48 kHz. To obtain a secondary path model, we used
the measurement data from [17], which provides secondary
path responses for different persons and fitting scenarios. We
averaged over all responses corresponding to normal wearing
positions to get an average normally-fitted secondary path
impulse response, that is, g(n) = 1/|G|

∑|G|
l=1 gl(n), where |G|

102 103 104

−40

−20

0

Frequency (Hz)

|Ĝ
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Fig. 4. Frequency response of the secondary path model with order 10.
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Fig. 5. Objective weighting function Wd with strong emphasis on the
frequency range between 80Hz and 950Hz.

stands for the cardinality of the set of available responses with
a normal fit. We then used g(n) as the target response for
the iterative identification of linear systems as proposed in
[18]. The model order was set to NG = 10. The resulting
secondary path model frequency response Ĝ(ejΩk) is shown
in Fig. 4. It can be seen from the magnitude plot ( ) that
Ĝ(ejΩk) has resonances at 150Hz and 4 kHz. As indicated by
the phase response ( ), the model is non-minimum phase,
as there are zeros of Ĝ, which lie outside the unit circle. For
the weighting term Wd in the objective function in (10), we
utilized the method described [15] and designed a magnitude
spectrum with band-pass characteristic in the frequency range
between 77Hz and 850Hz. The resulting weighting is shown
in Fig. 5. For the upper limit of noise amplification, we set WS

to a constant value of 0.625 such that 1/WS corresponds to
4 dB. We calculated the uncertainty dynamically using convex
sets [14] and solved the optimization problem in (10) by
implementing a sequential quadratic program (SQP) based on
an active-set line-search algorithm. For numerical stability, we
extended the algorithm with an adaptive step size control and
used the BFGS-method to obtain estimates of the Hessian
matrix [19]. Instead of stopping after a fixed number of
iterations, we set a target objective function value of 0.0001
that has to be reached for the SQP algorithm to stop. We set the
order of the Laguerre approximation to M = 17 and placed
the pole at α = 0.92.

V. EVALUATION

A. Nominal Performance

In the following we refer to Laguerre-filter-based IMC as
L-IMC, and to FIR-based IMC as FIR-IMC. The nominal
sensitivity and complementary sensitivity functions of L-IMC
are shown in Fig. 6. The optimized Laguerre filter complies
with the robust stability and nominal performance criteria.
That is, both |T | < 1/|Wχ

T | and |S| < 1/|WS | are fulfilled
for each frequency. Furthermore, we observe that the 3 dB
noise attenuation bandwidth, that is, all frequencies where
|S| < 0.707, is about 700Hz wide. The 20 dB noise atten-
uation bandwidth is about 250Hz wide. In Fig. 7, we also
compare the nominal sensitivity of the L-IMC to different
order FIR-IMC designs. In terms of maximum attenuation
the L-IMC is on par with the order 501 and 255 FIR-IMC
designs. However, regarding low-frequency attenuation, the
L-IMC achieves better results than FIR-IMC designs with
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|(
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)
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Fig. 6. Top: Nominal sensitivity function of the Laguerre-based IMC
design with noise amplification limit 1/WS . Bottom: Nominal complementary
sensitivity function of L-IMC with their associated uncertainty bound 1/Wχ

T .
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Fig. 7. Comparison of nominal IMC sensitivity functions of optimized FIR
filters with order M = 63, 127, 255, 501 and the Laguerre filter with order
M = 17.

order 255, 127 and 63. Not shown here, we also noticed that,
although we did not pose further regularization regarding the
magnitude response of Qℓ at higher frequency, the L-IMC
design has significantly less gain than the FIR-IMC designs for
frequencies above 9 kHz, with a maximum difference of 24 dB
at 20 kHz. Large magnitude values of the FIR-IMC designs
arise from the fact that Q approximates Ĝ−1 (see discussion
in Section II-A). Not having to use additional measures to
prevent this behavior is, in our opinion, an advantage of the
Laguerre approach. Lastly, we want to relate the computational
complexity of the Laguerre approach to the FIR method.
In terms of multiply and accumulate (MAC) operations, the
Laguerre filter requires 2 + 4M MACs whereas the FIR filter
requires MFIR MACs. Here, M and MFIR denote the filter
orders with M ≪ MFIR.

B. Non-Nominal Performance

To analyze the stability properties, we simulated scenarios
where Ĝ ̸= G. We employed the data augmentation procedure
described in [14] to generate additional secondary path data
and to avoid evaluating the filter design with secondary path
data that were used during optimization. We used the following
operation on a pair of measured impulse responses g1, g2 ∈ G:

Ğ(ejΩk) =
1

2

2∑
j=1

DFT [γj gj(n+∆j)] . (12)

Here, DFT[·] denotes the discrete Fourier transform. Further-
more, γj ∼ N (1, 0.12) and ∆j ∼ U(−2, 2), j = 1, 2, where
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N and U indicate the normal and uniform distributions, re-
spectively. Using (12), we created I = 100 artificial secondary
path frequency responses. For each Ği, i = 1, 2, . . . , I we
evaluated the resulting sensitivity function

Si,δ(e
jΩk) =

1−Qδ(e
jΩk)Ĝ(ejΩk)

1 +Qδ(ejΩk)
[
Ği(ejΩk)− Ĝ(ejΩk)

] , (13)

where δ = {FIR, ℓ} indicates the filter design used for Q.
The results are shown in Fig. 8. For each filter design, we
combine individual Si,δ to the sets Sδ for which we compute
the minimum, mean and maximum values per frequency.
It appears that for both FIR-IMC and L-IMC, the nominal
sensitivity ( ) is similar to the expected value of the non-
nominal sensitivity functions ( ). In direct comparison,
both designs perform similarly for frequencies below 800Hz.
Yet, L-IMC yields slightly more noise amplification in the
frequency range between 1 kHz and 2 kHz. With FIR-IMC
there is a peak at 3.6 kHz, which becomes particularly sig-
nificant when considering in-the-ear hearing devices, where
the ear canal resonance lies in this frequency range. Towards
frequencies above 2 kHz, the induced model mismatch causes
less noise amplification for L-IMC, and for frequencies above
10 kHz there is no noise amplification at all.

We also analyzed the gain margin (GM) and phase margin
(PM) for each secondary path and each design. The minimum,
average and maximum values are listed in Table I. On average,
the GMs for both designs differ only by 0.3 dB, although L-
IMC achieves lower PM values overall. During our numerical
experiments, both designs remained stable. Thus, we conclude
that both designs provide a comparable level of robustness.

TABLE I
GAIN AND PHASE MARGINS FOR L-IMC AND FIR-IMC DESIGNS

FIR-IMC L-IMC

Gain Margin (dB)
min. 2.34 3.69
max. 17.17 16.06
mean 9.06 8.73

Phase Margin (deg)
min. 19.61 16.11
max. 74.56 68.47
mean 45.87 36.95

VI. CONCLUSION & OUTLOOK

In this paper, we demonstrated that the IMC filter approach
for FBANC can successfully be combined with Laguerre IIR
control filter designs. We discussed the appropriate choice of
the Laguerre parameter α, which affects the low-frequency
emphasis of the Laguerre filter. Furthermore, in direct compar-
ison to conventional FIR filter-based IMC designs, we found
that the Laguerre filter achieves a similar level of nominal
active noise reduction with a much smaller filter order. Thus,
we see potential in further research of Laguerre filter-based
IMC for FBANC. For instance, global optimization techniques
that work well with a small number of parameters could now
be considered. In addition, one could also use Laguerre filters
to model the secondary path.
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