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Abstract—By using multiple reference microphones as input
channels and multiple loudspeakers as output channels, multi-
channel feedforward active noise control (ANC) systems can
achieve better noise reduction performance compared to single-
channel feedforward ANC systems. However, as the number of
channels increases, the computational load rises significantly,
affecting the system’s real-time capability. In this work, a joint
input and output channel selection (J-IO-CS) method is proposed
for multi-channel feedforward ANC to improve its computational
efficiency. We first design a novel channel selection model by
minimizing the residual noise power while constraining compu-
tational complexity through the group sparsity of spatial filters.
Due to the non-convex nature of the above model, we convert it
into a convex problem via the ℓ1,2-norm after exchanging its ob-
jective and constraint. Furthermore, we introduce an adjustable
parameter to ensure that the reformulated problem is equivalent
to the original one. To the best of our knowledge, the proposed J-
IO-CS method is the first attempt to simultaneously select input
and output channels in multi-channel feedforward ANC systems,
which delivers higher computational efficiency than existing input
channel selection approaches. Numerical experiments confirm its
validity.

Index Terms—multi-channel active noise control, feedforward
control, convex optimization, channel selection.

I. INTRODUCTION

Active noise control (ANC) has garnered significant atten-
tion in various applications, such as headphones [1], headrests
[2], and vehicles [3], among others. The traditional single-
channel feedforward ANC system uses a reference microphone
(RM), i.e., an input channel, to capture the noise signal,
then the ANC controller generates “antinoise” through a
loudspeaker, i.e., an output channel, to cancel the noise at the
control point [4], [5]. Since the single-channel feedforward
ANC system utilizes only one input channel and one output
channel, its performance is often limited in complicated noise
environments [6].

To cope with more complex noise scenarios, multi-channel
feedforward ANC systems adopt multiple RMs and multiple
loudspeakers, resulting in significantly improved noise reduc-
tion performance [7], [8]. Theoretical analysis and experimen-
tal results show that the more input or output channels, the
better the ANC performance [9]. However, increasing both
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the number of input and output channels simultaneously raises
computational complexity quadratically [10], [11], which may
affect the system’s real-time capability.

Modifications can be made to the multi-channel feedforward
ANC configuration to reduce computational complexity. For
example, the co-located ANC structure ignored cross-reference
effects, which can reduce the number of redundant spatial
filters to save computational resources [12]. Another strategy
is to reduce computational load by selecting the most infor-
mative subset of RMs. In [13], the time difference of arrival
(TDOA) between the RM and the error microphone (EM) was
first estimated, and then the RM that satisfies causality was
selected. Recently, Zhang et al. analyzed the impact of the
coherence between RM signals and EM signals on the multi-
channel feedforward ANC system [14]. Based on that, high-
coherence RMs were selected to conduct noise control in [15].
However, the studies above only reduced redundancy within
the input channels (i.e., RMs) while ignoring the redundancy
in output channels (i.e., loudspeakers).

In this paper, to further improve computational efficiency,
we propose a joint input and output channel selection (J-
IO-CS) method for multi-channel feedforward ANC systems.
Specifically, the best subset of input and output channels is
defined by minimizing the residual noise power under a pre-
specified computational complexity constraint. As the above
criterion involves non-convex programming, we convert it
into a convex one by introducing an adjustable parameter
α. By finding an appropriate value for α, we can obtain a
near-optimal channel selection result. Compared with existing
methods, the J-IO-CS method shows better performance in
terms of computational efficiency.

II. FUNDAMENTAL

A. Multi-channel Feedforward ANC System

Let us consider a general (I, J,K) multi-channel feedfor-
ward ANC system (Fig. 1), where the ANC controller receives
the noise signals that are captured by I RMs, and emits “anti-
noise” through J loudspeakers to cancel the noises at K
control points. The control signal yj(n) emitted by the j-th
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Fig. 1. Block diagram of the multi-channel feedforward ANC system.

loudspeaker at time n can be expressed as

yj(n) =

I∑
i=1

xT
i (n)wji(n), (1)

where superscript (·)T indicates the matrix (or vector) trans-
pose, xi(n) = [xi(n), xi(n−1), ..., xi(n−M+1)]T with xi(n)
denoting the received signal of the i-th RM at time n, and
wji(n) = [wji,1(n), wji,2(n), ..., wji,M (n)]T is the M -order
noise control filter that is related to RM i and loudspeaker
j. An EM is placed at the k-th control point to record the
residual noise signal ek(n), which can be expressed as

ek(n) = dk(n) +

J∑
j=1

yT
j (n)skj , (2)

where yj(n) = [yj(n), yj(n− 1), ..., yj(n− L+ 1)]T, dk(n)
represents the unwanted noise (i.e., desired signal) captured
by the k-th EM at time n, and the secondary path between
the k-th EM and the j-th loudspeaker is modeled as an L-tap
FIR filter skj = [skj(0), skj(1), ..., skj(L − 1)]T. According
to (2), the unwanted noise at the k-th EM can be estimated as

d̂k(n) = ek(n)−
J∑

j=1

yT
j (n)ŝkj , (3)

where d̂k(n) is the estimate of dk(n), and ŝkj is the estimate
of skj , which can be obtained through offline modeling [16].

The goal of the multi-channel feedforward ANC is to
minimize the error signals at all control points simultaneously.
To achieve this, the ANC controller is required to minimize
the following cost function

J =

K∑
k=1

Jk = E

{
K∑

k=1

e2k(n)

}
,Jk = E

{
e2k(n)

}
, (4)

where E {·} denotes the expectation operator. To meet the
real-time requirements, the multiple error filtered-x least mean
square (MEFxLMS) algorithm [17] adopts the instantaneous
error

∑K
k=1 e

2
k(n) to replace E

{∑K
k=1 e

2
k(n)

}
in (4), thereby

obtaining the following recursive solution

wji(n+ 1) = wji(n) + µ

K∑
k=1

x′
kji(n)ek(n), (5)

where µ is the stepsize and x′
kji(n) is given by

x′
kji(n) = Xi(n)ŝkj , (6)

where Xi(n) = [xi(n) xi(n − 1) . . . xi(n − L + 1)].
The number of multiply-accumulate operations required per
iteration in the MEFxLMS algorithm is [11]

B = IJ(KL+KM +M) +K. (7)

Apparently, B increases quadratically with the number of input
and output channels (i.e., I and J). In other words, although
a larger number of input and output channels delivers better
ANC performance in the theoretical aspect, the computational
complexity (i.e., B) increases at the same time, which may
affect the real-time processing at run-time. To this end, some
low-complexity multi-channel feedforward ANC algorithms
were developed leveraging RM selection strategies.

B. Low-complexity multi-channel feedforward ANC Systems
via RM Selection

In [15], the coherence-based weight determination (CWD)
algorithm was proposed to select RMs with higher utility.
Specifically, let xi = [xi(1), xi(2), ..., xi(N)]T and d̂k =
[d̂k(1), d̂k(2), ..., d̂k(N)]T be the i-th reference signal and the
k-th estimate of the desired signal, respectively (with N being
the signal length in RM selection), then the coherence between
xi and d̂k can be computed as

Cxid̂k
(ω) =

1

Sd̂kd̂k
(ω)

S∗
xid̂k

(ω)S−1
xixi

(ω)Sxid̂k
(ω) , (8)

where ω represents the frequency of interest, (·)∗ denotes
the complex conjugate, Sxid̂k

(ω) represents the cross-power
spectral density of xi and d̂k, while Sxixi

(ω) and Sd̂kd̂k
(ω)

represent the power spectral densities of xi and d̂k, respec-
tively. The CWD method tends to select RMs with higher
Cxid̂k

and put other RMs to sleep.
Note that this method requires the system to be pre-trained

using a small amount of observations to obtain the optimal
RM subset in advance. Afterward, redundancy in RMs can be
effectively reduced, achieving a linear decrease in computa-
tional complexity at the cost of light performance penalties.
However, redundancy within loudspeakers still exists. Further-
more, whether the coherence between signals to evaluate the
utility of RMs is truly effective remains questionable.

III. JOINT INPUT AND OUTPUT CHANNEL SELECTION
(J-IO-CS) FOR MULTI-CHANNEL FEEDFORWARD ANC

In order to simultaneously eliminate redundancy in both
RMs (i.e., input channels) and loudspeakers (i.e., output chan-
nels), we propose the J-IO-CS method in this section. Similarly
to (8), we conduct the proposed method from a small amount
of recordings (with a length of N ) before ANC. Then, the cost
function in (4) can be equivalently written in a matrix-vector
form as

J = d̂+ 2wTg +wTHw, (9)
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where

d̂ =

N∑
n=1

K∑
k=1

d̂2k(n), (10a)

g =

N∑
n=1

K∑
k=1

d̂k(n)gk(n), (10b)

H =

N∑
n=1

K∑
k=1

gk(n)g
T
k (n), (10c)

gk(n) =
[
x′T
k11(n) . . . x′T

kJ1(n) . . . x′T
kJI(n)

]T
, (10d)

w = [wT
11 . . .w

T
J1︸ ︷︷ ︸

wT
1

. . .wT
1i . . .w

T
Ji︸ ︷︷ ︸

wT
i

. . .wT
1I . . .w

T
JI︸ ︷︷ ︸

wT
I

]T, (10e)

where wji is the time-invariant multi-channel Wiener solution
and wi is the vector containing the filter coefficients of the
i-th input channel.

A. Problem Modeling

Given an upper bound B0 of computational load, i.e., B ≤
B0, this work aims to find the optimal combination of input
and output channels. It can be achieved by minimizing the
output noise power while constraining B ≤ B0, obtaining

min
w

d̂+ 2wTg +wTHw

subject to IwJw ≤ B0 −K

K(L+M) +M
, (11)

where Iw and Jw indicate the numbers of input channels
and output channels, respectively, and the constraint in (11)
is obtained from (7) if B ≤ B0. Note that both Iw and Jw are
related to the group sparsity in w, which are represented as

Iw = ∥w∥0,2 =
∥∥∥[∥∥wT

1

∥∥
2
,
∥∥wT

2

∥∥
2
, · · · ,

∥∥wT
I

∥∥
2

]T∥∥∥
0
,

Jw = ∥w̄∥0,2 =
∥∥∥[∥∥w̄T

1

∥∥
2
,
∥∥w̄T

2

∥∥
2
, · · · ,

∥∥w̄T
J

∥∥
2

]T∥∥∥
0
,

(12)

where ∥·∥0 and ∥·∥2 denote ℓ0-norm and ℓ2-norm, respectively,
∥ · ∥0,2 denotes ℓ0,2-norm, and w̄ can be defined by

w̄ = [wT
11 . . .w

T
1I︸ ︷︷ ︸

w̄T
1

. . .wT
j1 . . .w

T
jI︸ ︷︷ ︸

w̄T
j

. . .wT
J1 . . .w

T
JI︸ ︷︷ ︸

w̄T
J

]T, (13)

where w̄ is the reshaped vector by reordering w with respect
to output channels, and w̄j is the vector containing the filter
coefficients of the j-th output channel. However, the constraint
in (11) is non-convex and discontinuous, which brings serious
challenges for problem-solving.

B. Problem Reformulation

We first relax the constraint in (11) using the complete
square inequality

IwJw = ∥w∥0,2∥w̄∥0,2 ≤ 1

2
(∥w∥20,2 + ∥w̄∥20,2). (14)

Building on this, we reformulate the problem (11) by exchang-
ing its constraint and objective. This involves minimizing the

group sparsity of the filter coefficients while constraining the
residual noise power with a lower bound α, i.e.,

min
w

∥w∥20,2 + ∥w̄∥20,2

subject to d̂+ 2wTg +wTHw ≤ α. (15)

Note that (15) is equivalent to (11) after determining an
appropriate α. However, the ℓ0,2-norm in (15) is non-convex.
Inspired by [18], [19], the ℓ0,2-norm can be replaced with the
ℓ1,2-norm (by substituting the ℓ0-norm in (12) with the ℓ1-
norm), then (15) can be reformulated as

min
w

1T
I p+ 1T

J q

subject to d̂+ 2wTg +wTHw ≤ α,

∥wi∥22 ≤ pi, i = 1, · · · , I,
∥w̄j∥22 ≤ qj , j = 1, · · · , J, (16)

where 1I represents the I dimensional column vector with
all elements being 1, p = [p1, p2 . . . pI ]

T, and q =
[q1, q2 . . . qJ ]

T. This problem can be solved by existing
solvers such as CVX [20] or SeDuMi [21]. When pi or qj is
zero, it is reasonable to put the i-th input channel or the j-th
output channel to sleep during the execution of ANC. In other
words, only the selected channels are activated to perform the
ANC after solving (16). Furthermore, by observing (16) we
can conclude that

• Removing q allows (16) to become an input channel
selection (ICS) problem, from which the optimal subset
of input channels can be determined when activating all
output channels;

• By removing p, (16) degenerates into an output channel
selection (OCS) problem, from which the optimal subset
of output channels can be determined when activating all
input channels;

• By directly solving (16), we can obtain the optimal
combination of input and output channels. Compared to
ICS and OCS, it can simultaneously reduce redundancy
in both input and output channels, thus delivering higher
computational efficiency.

As we mentioned earlier, (16) is equivalent to (11) as long
as finding an appropriate α. To this end, we will propose a
computation rule of α in the next subsection.

C. Computation Rule of α

To determine an appropriate α that satisfies the constraint in
(11), we propose a computing rule based on bisection search-
ing. Since α in (16) represents the predefined residual noise
power, the bisection searching interval, i.e., [αMin, αMax],
can be initialized by the residual noise power in (9) when
activating all input and output channels or turning off the ANC
controller. The detailed iterative procedure is described in
Algorithm 1, where t denotes the index of bisection searching
iterations and c refers to the right-hand side of the constraint
in (11), i.e., c = B0−K

K(L+M)+M .
The termination condition in Algorithm 1 requires that

Iw(t)Jw(t) ≤ c and (Iw(t) + 1)Jw(t) > c ∪ Iw(t)(Jw(t) +
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1) > c should be satisfied at the same time. The first term
Iw(t)Jw(t) ≤ c is coincident with the constraint in (11), while
the second term (Iw(t)+1)Jw(t) > c∪ Iw(t)(Jw(t)+1) > c
allows the inequality constraint Iw(t)Jw(t) ≤ c as close
as possible to an equality to pursue the maximum ANC
performance. At this point, (16) and (11) possess approximate
solutions.

Algorithm 1 Computate α based on bisection searching

input : c, d̂, g,H, αMin(0), αMax(0)
output: α(t)

1 repeat
2 α(t) = (αMax(t− 1) + αMin(t− 1))/2;
3 Solve (16) with α(t) to obtain Iw(t) and Jw(t);
4 if Iw(t)Jw(t) ≤ c then
5 αMax(t) = α(t);
6 else
7 αMin(t) = α(t);
8 end
9 until {Iw(t)Jw(t) ≤ c} ∩ {(Iw(t) + 1)Jw(t) > c ∪

Iw(t)(Jw(t) + 1) > c};

IV. SIMULATION RESULT

The simulation environment was an enclosure of size 3m×
3m, where 2 noise sources, 10 RMs, 6 loudspeakers, and 3
EMs were randomly distributed (Fig. 2). Two noise sources
played real recorded noises from dataset [22]. The sampling
rate was set to 16 kHz, and the signal length N for selection
was set to 48000 samples. When selecting all channels, the
computational load B = 10503. The step size and the filter
order were fixed to µ = 1.0 × 10−7 and M = L = 25,
respectively.

Fig. 2. Geometry configuration, including 2 noise sources, 10 RMs, 6
loudspeakers, and 3 EMs in an enclosure.

In the subsequent experiments, we used the normalized
mean squared error (NMSE) as the evaluation metric, which
is defined by

NMSE = 10 log10

∑Nlms

n=1

∑K
k=1 e

2
k(n)∑Nlms

n=1

∑K
k=1 d̂

2
k(n)

, (17)

where Nlms represents the signal length during MEFxLMS
filtering, which is set to Nlms = 160000 samples. Obviously,
the lower the NMSE, the better the noise reduction effect.

A. Effectiveness of Joint Input and Output Channel Selection

We first evaluated the effectiveness of the joint input and
output channel selection (J-IO-CS) after setting the upper
bound B0 of computational load to B0 = 5500. As discussed
below (16), we also conducted the input channel selection
(ICS) and the output channel selection (OCS) by removing
q and p from (16).

Fig. 3 shows the comparison results of three selection
strategies. The ICS selects input channels {1, 3, 4, 5, 8} while
activating all output channels; the OCS selects output channels
{2, 3, 5} while activating all input channels; and the J-IO-CS
selects input channels {1, 3, 4, 5, 8, 10} and output channels
{2, 3, 4, 5, 6}. As depicted in Fig. 3, the overall NMSE (red
bar) of the J-IO-CS is significantly lower than that of the other
two methods, demonstrating the effectiveness of joint input
and output channel selection. This is because the J-IO-CS can
reduce the redundancy within both input and output channels.
To be specific, the NMSE of the J-IO-CS is comparable to that
of OCS at EM {1}, both of them perform better than ICS; all
three methods provide similar NMSEs at EM {2}; and the
J-IO-CS performs best at EM {3}.

Fig. 3. Noise reduction performance of three different selection strategies
under the same computational complexity.

B. Performance under Different Computational Complexities

In this part, we further tested the details of the J-IO-CS
method by specifying different computational complexities,
i.e., B0 = {1000, 3000, 5000, 7000, 9000}. As shown in Table
I, the actual computational complexity Bs after channel se-
lection is always less than and close to the pre-defined upper
bound B0. The reason is that the proposed computation rule of
α allows the reformulated problem (16) to be approximated to
the original problem (11). In addition, the number of input and
output channels gradually increases as B0 increases, leading to
improved noise reduction performance. Moreover, it is evident
that the decrease in NMSE rate becomes smaller with raising
B0, due to the fact that redundancy in channels increases as
the number of channels increases. This phenomenon further
emphasizes the necessity of selecting the input and output
channels. It can also be seen that the bisection searching
converges within at least 6 iterations. We would like to note
that all channels can be activated to conduct multi-channel
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TABLE I
SELECTION BASED ON DIFFERENT UPPER BOUND B0 OF COMPUTATIONAL

LOAD.

B0 1000 3000 5000 7000 9000
Bs 703 2628 4378 6302 8403

Selected
input channels {3,4} {1,3,4} {1,3,4,

5,8}
{1,3,4,
5,8,10}

{1,2,3,4,
5,7,8,10}

Selected
output channels {2,5} {2,3,4,

5,6}
{2,3,4,

5,6}
{1,2,3,
4,5,6}

{1,2,3,
4,5,6}

NMSE(dB) -4.41 -7.34 -12.99 -14.98 -15.83
num. of iter. 4 3 4 6 5

feedforward ANC before obtaining the channel selection re-
sults using the proposed method.

C. Comparison Experiment

To the best of our knowledge, the J-IO-CS is the first
attempt to simultaneously select input and output channels in
multi-channel feedforward ANC systems, thus only existing
input channel selection methods, i.e., the CWD [15] and the
causality-constraint-based selection (CCS) [13], were carried
out to act as the baselines. All methods were executed multiple
times with different numbers of activated channels to evaluate
the computational efficiency of the multi-channel feedforward
ANC system. As shown in Fig. 4, it can be observed that
the NMSE of the J-IO-CS is always lower than that of
the other two methods. The reason is twofold: the designed
channel selection criterion outperforms existing rules based
on coherence [15] or causality [13]; the joint selection of
input and output channels is superior to selecting only input
channels.

Fig. 4. Computational efficiency evaluation.

V. CONCLUSION

This paper proposed a joint input and output channel selec-
tion (J-IO-CS) method for multi-channel feedforward ANC to
improve the system’s computational efficiency. It was achieved
by promoting the group sparsity of the spatial filter after
constraining the ANC performance. Furthermore, the proposed
method can also be driven by a constraint of computational
complexity by seeking a suitable ANC performance constraint.
The simulation results confirmed its effectiveness. In our
future work, we will study how to combine the J-IO-CS with
filter-order determination to further improve computational
efficiency.
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