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Abstract—Identification of linear time-varying acoustic systems
with multiple inputs and outputs is required in signal processing
tasks like echo cancellation or crosstalk cancellation. When all
inputs are excited simultaneously, identification is difficult because
each output is a superposition of the influence of all inputs. If
the inputs are correlated, identification is even more difficult
due to the so-called non-uniqueness problem. A recent approach
uses an extended Kalman filter to identify acoustic systems on
nonlinear lower-dimensional manifolds. We extend this approach
to MIMO systems. Instead of simply increasing the size of the
neural networks, we propose architectural variants to control
the number of parameters. We show that restricting the size of
the network in exchange for its flexibility is beneficial for online
system identification.

Index Terms—echo cancellation, crosstalk cancellation, model
learning

I. INTRODUCTION AND RELATION TO PRIOR WORK

Acoustic System Identification (ASI) with multiple inputs
and outputs, or MIMO ASI for short, is a common problem in
audio signal processing. A prominent application is Acoustic
Echo Cancellation (AEC) between multiple loudspeakers and
microphones, e.g. in cars or conference rooms [1-3]. A
visualization of an AEC scenario with two loudspeakers and
two microphones is shown in Fig. 1. The sound emitted by
the loudspeakers is also picked up by the microphones. To
avoid an echo at the far end, an estimate of that echo must
be subtracted from both microphone signals. A more recent
application is adaptive binaural Crosstalk Cancellation (CTC),
where the acoustic paths between multiple loudspeakers and
two microphones at a listener’s ears must be tracked in real
time to design cancellation filters [4, 5]. In both applications,
the acoustic paths are modeled as Finite Impulse Response
(FIR) filters, as shown in Fig. 1. The goal of ASI is to track the
coefficients of these filters in real time. Fig. 1 also shows why
estimation is more difficult for MIMO systems. For example,
the filter hj; (k) is estimated using the measurement y; (k).
The desired filter output dy; (k) is superimposed on the filter
output di2(k), which behaves like measurement noise from this
perspective. Consequently, hi2(k) must also be known in order

not to interfere with the identification of hy; (%), and vice versa.

Compared to the single channel case, more parameters have to
be identified, which slows down the identification further. This
is detrimental when the acoustic paths are time-varying. Aside
from slow convergence, another common problem with MIMO

Simulations were performed with computing resources granted by RWTH
Aachen University under project rwth1260.
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Fig. 1: Model of a full-duplex AEC setup

ASI is correlation of the excitation signals. In the example in
Fig. 1, this happens because the far-end signals are picked up
by a microphone array. In this case, there are multiple filter
estimates that all suppress the echo signals equally well, but
do not necessarily correspond to the actual acoustic paths. This
phenomenon is commonly known as Non-Uniqueness Problem
(NUP) [1]. At first glance, this does not appear to be a serious
problem, since the wrong solutions suppress the echoes equally
well. However, if the individual paths at near or far end change
in a time-varying scenario, re-convergence from an incorrect
estimate may take longer than from the optimal estimate. The
CTC application suffers from the NUP because the binaural
excitation signals are inherently correlated. Furthermore, CTC
filter design aims to invert the actual acoustic paths, so that
the effect of the NUP can be more severe [4].

For ASI a variety of solutions have been presented in the
last decades, usually exploiting adaptive filters [6]. Many state-
of-the-art approaches rely on optimal step size control of the
Kalman Filter (KF) [7, 8] and its formulation in the frequency
domain [9, 10]. Since the latter is computationally very efficient,
it is an appealing choice for MIMO ASI [3]. Early approaches
to overcome the NUP rely on removing the correlation between
the excitation signals through distortion [11, 12]. Another way
to counter the NUP is to restrict the space of possible estimates
[13]. The assumption that acoustic paths in the same enclosure
lie on a nonlinear manifold [14] has motivated many approaches
to incorporate manifolds in ASI [15-19]. These approaches
either project a filter estimate onto the manifold [15, 16] or
restrict the solution space to the manifold [17-19].

In this paper, we extend and evaluate the approach of [19] for
the MIMO case. It tracks the filter coefficients in the manifold
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coordinate system learned by a neural autoencoder. It uses the

step size control of an Extended Kalman Filter (EKF) [20].

In Section II-A we derive the weight update for the MIMO
adaptive filter, and in Section II-B we propose several design
variants for the network architecture to keep the number of
trainable parameters within limits. In Section III we evaluate
these variants in a computer simulation.

Throughout this paper, bold lowercase letters denote vectors
and bold uppercase letters are matrices. & denotes an expected
value and diagsquarea is a matrix that contains the squared
elements of a on its diagonal. The identity matrix is given by
I and 0O is a matrix with only zeros.

II. PROPOSED CONCEPT
A. MIMO Adaptive Filtering on Manifolds

Our algorithm uses block adaption, meaning that the recorded
signals y;(k) are buffered to vectors Yi,m of length r. Here
1€ {l... Ny} is the microphone index, Ny;. the number of
microphones and m is the frame index. The same notation holds
for noise n;(k) and echo d;(k) contained in y; (k). The vector
h;; », contains [ filter taps of the path between microphone
and source j € {1... Ny}, during the frame m. The recent
r+1—1 samples of the excitation signals x; (k) are rearranged
to convolution matrices X; ,,, with shape [ x 7. The current
block of the recorded signal is modeled as

Nire
Yiom = ZXj,mhij,m + 0. (D

j=1
In traditional MIMO ASI, there is one adaptive filter per
receiver [3]. Using a KF, (1) can be used as observation
equation. However, we assume that there is a strong dependency
between all paths in the same enclosure. Hence, we aim at a
joint adaptation and give the observation equation without loss

of generality for Ny = Npic = 2 as
hll,m
Yim| _ Xl,m X2,m 0 0 h12,m + nj m
Yom| | O 0 Xim Xom| |haim ns , [(2)
y X hoo T’
m . - .

Following the assumption that paths in the same enclosure are
located on a manifold with !’ dimensions and !’ < Ny Nmicl,
we can express h,, = foec(zm). Here z,, is a coordinate
representation within the manifold and fg. is the nonlinear
and differentiable decoder function that maps z,, € R onto
h,, € RNsNmel, Following [19] we use an EKF that tracks
Z., instead of h,,. The nonlinear state space system reads

Ym = medec(zm) + 1y, €))
Zm = VZm—1+ O . “4)

The state z,, of this system follows a first-order Markov model
with fading factor v and is observed through f4... The random
vectors n,,, and d,, are measurement noise and process noise,
respectively, and follow multivariate Gaussian distributions

with zero mean. Using the Jacobian V,,, = % we can state
m

the EKF equations:
Time Update

Zy = V1 (5a)
P, =P! | +Qsm (5b)
Measurement Update

Qe = X Vi Po, VEXT 4+ Quim (6a)

K, =P, VIXT Q.. (6b)

din = X face () (6¢)

Az = Ky (ym - 8m) (6d)

z) =2, + Az, (6e)

Pl =1y —KnXn Vi) Py, . (6f)

The superscripts ~ and T denote prior and posterior estimates,
respectively. Here, P, and P, express the State Error
Covariance (SEC) of the states z,, and z;, respectively. The
matrices Qs ., and Qy ,, express the vector covariance of the
unkown noise vectors d,, and n,,. The matrix K,,, is called
the Kalman gain matrix, and acts as an optimal step size [8].

An import implication from these equations is that the
measurements from all Ny, microphones influence the estimate
h,, of all employed acoustic paths. So, unlike the traditional
approach of Ny, independent MISO adaptive filters [3],
information is exchanged between microphones. Motivated
by efficiency, [3] sets P as sub diagonal in the frequency
domain, meaning that a frequency bin of one acoustic path is
coupled to the same frequency bin of all paths related to the
same microphone. In contrast, the proposed approach allows
for any correlation, depending on the choice of fye..

B. Neural Network Architecture

A common choice to obtain fg. is to use a 5-VAE [21] [17-
19]. Variational Autoencoders (VAEs) are neural autoencoders,
where the encoder predicts the parameters of a multivariate
Gaussian distribution, and obtains the latent representation z by
sampling from this distribution. During training, the weighted
Kullback-Leibler Divergence (KLD) between the predicted
distribution and the standard Gaussian distribution is added to
the training loss to ensure a contiguous latent space. After the
training only the decoder is kept to implement fge. : z — h
for the proposed algorithm.

The decoder in [19] utilizes four fully connected network
layers, with an increasing number of neurons, to map the
vector z with the length I’ to the vector h with the length .
However, for MIMO ASI the network is required to output
the stacked impulse response vector of length N Nyicl. This
results in an increase in the number of network weights by
a factor of approximately (NgcNmic)?. So even for the most
compact MIMO configuration, Ng. = Npic = 2, the number
of required network weights is 16 times greater than for the
single channel case. This is detrimental due to a higher memory
consumption and increased training time. Most notably, the
higher number of trainable parameters necessitates a higher
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Fig. 2: Design variants

number of training instances, obtained by time-consuming and
costly acoustic measurements. Therefore we propose additional
network architecture variants that require less parameters.
Formally, we divide both the encoder and the decoder into an
outer stage and an inner stage. The outer stage refers to first
layers of the encoder and the last layers of the decoder. The
inner stage refers to the remaining layers. In total, there are
seven variants, that can be categorized by two design choices.

The first design decision is on which type of correlation the
dimensionality reduction in the outer stage should be based.
We distinguish four cases, illustrated for the decoder in Fig. 2:
PerAll, PerPath, PerMic, and PerSource. The first
option PerAll corresponds to the generic variant described
in the previous paragraph and takes into account any correlation,
within and between different acoustic paths. This design has
the largest number of parameters. On the other hand, the
option PerPath has the lowest number of parameters, since it
considers only the correlation within each path. This is achieved
by using Ny - Npmic smaller sublayers in parallel. The last two
options, PerMic and PerSource, are compromises in terms
of the correlation exploited and the number of parameters.
In the case of PerMic, the outer stage uses [Vy;. sublayers,
where a sublayer jointly processes all acoustic paths associated
with a microphone. Similarly, the outer stage can use one
sublayer for each loudspeaker, resulting in the PerSource
variant. Regardless of the design, all outputs of the encoders’
outer stage are stacked into a single vector so that all paths
are processed together in the inner stage. In other contexts, the
architectures except for PerA11 may be called multi headed
networks.

The second design choice is only applicable to the multi
headed variants. Considering symmetry in many acoustic
setups, it is possible to force parallel sublayers to have the
exact same weights. This technique is commonly known as
parameter sharing. Like the usage of sublayers, parameter
sharing exchanges the network’s flexibility against a reduced
number of parameters. Combining the two presented design
choices of sublayers and parameter sharing leads to seven
different design variants for the VAE.

III. EXPERIMENTAL VALIDATION

A. Experimental Design

For the experimental validation we consider an illustrative
mixture of the intended applications AEC and CTC: A
listener with microphones at their ears is in a room with
two loudspeakers close to a wall. The task is to identify

the N - Npic = 4 acoustic paths between the loudspeakers
and the ear microphones. In the first of two experiments,
we investigate the influence of the design variant and the
latent space dimension on the ASI performance. In the second
experiment we assess the algorithms capability to overcome
the NUP. As a metric we consider the Echo Return Loss
Enhancement (ERLE)

| N E{d}(k)}
Niic 4= E { (dl(k’) - g’(k))Q}

and the relative system distance

ERLE =

1 Nmic Ny

NsrcNmic T
=1 j=1

[hi; —h;?

D
b *

Expected values in the computation of the ERLE are approxi-
mated by recursive smoothing with a time constant of 0.15s.

B. Dataset Design and Testing Scenarios

To train the VAE, data is needed. In this paper we simulated
Binaural Room Impulse Responses (BRIRs) using the image
source method together with a spherical interpolation of
the listeners Head-Related Transfer Function (HRTF) [22].
The head was a FABIAN artificial head measured by [23].
The simulated near end room has a reverberation time of
0.125s. The sampling rate is 16 kHz and impulse responses
are truncated to 0.125s (2000 samples). The simulated sound
sources are placed close to a wall and have a distance of
2.5m to each other, facing the center of the room with the
directional characteristic of a common loudspeaker model. The
head was located at 637 random receiver positions, all located
in a volume of 0.6 x 0.6 x 0.3m3. At each position we simulated
the HRTFs for all azimuth angles from —179° to 179° in steps
of 2°, resulting in 114.660 BRIRs. We made sure that no
receiver position was closer than 5cm to the center of the
room, since this single position is used for testing.

C. Network Training

For network training we use Nadam [24] with an initial
learning rate of 104, The loss function is given by the sum
of the squared reconstruction loss, the KLD weighted with
B = 1077, and an additional L, weight regularization with
a factor of 10~8. All encoders and decoders have two layers
each in the outer stages, and two layers in the inner stages. An
exception is given by the design variant without sublayers: Due
to the high number of parameters it only has three layers each
in encoder and decoder. Hidden layers use the swish activation
function and output layers use a linear activation. Tab. I shows
the number of trainable parameters for the case I’ = 500.

# Params / 108 | PerPath | PerSource | PerMic | PerAll
Weight sharing 5.0 12.5 12.5 45
Individual 18.5 26.5 26.5 ’

Tab. I: Number of trainable parameters in the decoder
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D. State Space Parameters

To initialize P, and z, we transform all training instances
into the latent space using the trained encoder, without statistical
sampling. Then, P is the vector covariance and z, the mean
of all encodings. To estimate Qs we follow [25] and estimate
Qs.m = aQsm—1 + (1 — a)diagsquare(Az) recursively.
Similarly and following [26], we estimate the measurement
noise covariance Q. = @Qn m—1+(1—a) diag square(e,,),
where e, is the residual error signal y,, — am. We initialize
Qn,m from oracle knowledge. The task of the online estimator
is to account for errors due to under-modeling of the decoder
and the length of the impulse responses.

E. Reference Algorithms

As a baseline we consider the very efficient subdiagonal
Frequency Domain Kalman Filter (FDKS) [3]. It consists
of two MISO Kalman filters, such that correlation is only
considered between speakers and between equal frequency bins.
Process noise is estimated as proposed in [3] using v = 0.995,
measurement noise is estimated as proposed in [26]. On the
other hand we consider an (exact) Time Domain Kalman Filter
(TDKE) that is able to account for any kind of correlation but
has a high complexity due to its large SEC matrix. To analyze
the need for a nonlinear manifold, we consider the linear
simplification of the proposed approach, where V is computed
only once by Principal Component Analysis (PCA) over the
training data. For comparability, the state and the SEC of all
reference algorithms are initialized from the training data, i.e.
its mean and the covariance in the corresponding space. This
results in an optimal step size [8]. For all algorithms, we set
r = 64 which corresponds to 4 ms.

FE. First Experiment: Network Architecture

In this experiment we train networks with all seven design
variants and with nine different subspace dimensions, resulting
in 63 trained decoders to be tested in the proposed ASI
algorithm. As test case, the receiving head performs an
azimuthal rotation from —90° to 90° within 10s, to test the
algorithm’s capability of tracking highly time-variant systems.
The impulse responses are truncated only after 0.21 s to account
for under-modeling in the training data. The Echo-To-Noise
Ratio ENR = E d?(k) /En?(k) is set to 20dB for both ears.

For the excitation signals «;(k) we follow Fig. 1. A person
is speaking into two microphones that are located 5 cm from
each other, as an example. The person is located randomly
in front of the microphones, so that the recorded signals are
correlated but not identical. The dry signals are 10 s of freeform
speech each from the first ten subjects in [27].

The results are shown in Fig. 3. Each point represents the
median of the metric for all ten test signals, considering only
frames where speech is active in the microphone signal. Dotted
and solid lines represent the proposed algorithm with and
without parameter sharing, respectively. Dashed lines show the
baseline algorithms. The results provide a variety of insights:

1 — The number of trainable parameters can be reduced
without sacrificing performance, as the overall depence on the
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Fig. 4: ERLE and relative system distance during a movement of the
far-end speaker.

network architecture is weak. On average, the variants that
use parameter sharing achieve better results. As an additional
benefit, these variants scale better with increasing number of
loudspeakers and microphones. For larger values of I/, decoders
without parameter sharing even fail completely. We conclude
that too large models are difficult to train.

2 — Nonlinear manifolds outperform linear manifolds in
terms of ERLE, when the subspace dimension is small. But it
has to be considered that the linear variant is less complex, so
the subspace dimension can possibly be increased to achieve
comparable performance at comparable complexity.

3 — The proposed algorithm is able to compete with or even
surpass the TDKE, which has a much higher complexity. It is
worth to mention that an important contributor to the TDKEs
performance is the data driven initialization of the SEC.

G. Second Experiment: Non-Uniqueness Problem

In this experiment we investigate the algorithms’ capabilities
to overcome the NUP. The head with microphones is fixed in
the center of the room and does not move. Instead, the speaker
in the far end room moves. First he is slightly closer to the
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right microphone and after 5s he moves so that he is slightly
closer to the left microphone. For the proposed algorithm we
use the configuration with I’ = 1000, sublayers PerPath and
with weight sharing. For the FDKS we set v = 0.9999. We
investigate two ENRs, i.e. 0dB and 20 dB.

Fig. 4 shows the ERLE and the relative system distance
over time. The effect of the NUP is clearly visible: For both
ENRs the FDKS has a slightly lower ERLE than the other
algorithms. However, the relative system distance of the FDKS
is much higher. After the positional change of the far end
speaker, the relative system distance of the FDKS becomes
lower but the filter needs to re-converge, resulting in a lower
ERLE. The other algorithms are not affected by the NUP. The
proposed algorithm and its linear variant restrict the space
of possible solutions, so that the filter cannot converge to a
false solution. The TDKE does not make assumptions about a
subspace, but the data-driven initialization of its SEC steers
the weight updates into the right direction.

IV. SUMMARY

In this paper we extended a single-channel manifold-ASI
algorithm to the multichannel case. Restricting the space
of solutions to a lower dimensional subspace reduces the
computational complexity compared to the TDKE and helps
to overcome the NUP. In addition, we proposed variants of
the neural network architecture which reduce the number
of trainable parameters. According to simulation results, the
reduction of parameters improves performance in real-time
BRIR identification. Future research should consider the algo-
rithms performance in real-world scenarios and its robustness
to changes in the reverberation time.
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