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Abstract—This paper presents a novel hybrid active noise
control (ANC) system designed to effectively mitigate a certain
class of composite noise, characterized by the superposition of
broadband noise and periodic signals at certain distinct fre-
quencies with relatively high amplitudes. The proposed method
leverages the strengths of the filtered-x least mean square (LMS)
algorithm, which is highly effective at suppressing broadband
noise. To further enhance performance, a switching mechanism
is introduced that integrates the concept of internal model
control (IMC) to address the inherent limitations of the LMS
algorithm, such as the waterbed effect and its inability to
effectively handle periodic disturbances at specific frequencies.
Experimental results, including a comprehensive comparative
analysis using an ANC verification platform, demonstrate the
superior noise attenuation capabilities of the proposed approach
and highlight its promising potential for practical applications in
environments with complex and mixed noise profiles.

Index Terms—Active noise control, composite noise, internal
model, switching mechanism.

I. INTRODUCTION

Active noise control (ANC) has become a widely applied
noise reduction technique in both industrial and everyday
environments in recent years, particularly for addressing mid-
to low-frequency noise that passive noise control cannot effec-
tively handle. The pioneering works date back to around 1985
[1], and the field has been extensively studied since the mid-
1990s [2], [3]. Despite the achievements so far, there are still
significant limitations when addressing broadband acoustic
sources, especially in industrial applications such as vehicle
interiors and construction sites, where the noise is typically
characterized by the superposition of broadband white noise
from the environment and periodic signals generated by rotat-
ing machines [4]-[6].

The widely recognized filtered-x least mean square
(FXLMS) algorithm is known for its ease of implementation
and effectiveness in broadband noise cancellation [7]-[12].
However, a significant limitation is the ‘waterbed effect’ [13]-
[15], where achieving noise reduction performance (NRP)
at certain frequencies within a feedback ANC system can
inadvertently increase noise levels at other frequencies. This
issue often requires recalibration or redesign of ANC systems
for specific applications, making it impractical to develop
a universally high-NRP filtered-based ANC across all fre-
quencies. Furthermore, these techniques typically struggle to
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achieve high-NRP for periodic noise at specific frequencies,
with limited attenuation of approximately -10 to -20 dB [16].
Alternatively, internal model (IM)-based control [17]-[19]
offers a solution for disturbance cancellation by using a replica
of the exosystem to generate anti-noise signals, effectively
canceling disturbances at targeted frequencies. Despite this,
the limitations of both approaches emphasize the need for a
more comprehensive noise suppression solution.

Based on above observations, we propose a novel hybrid
IMC-LMS controller, that combines the IM-based control and
feedback-type FXLMS through a novel switching mechanism.
The proposed controller mitigates the waterbed effect and si-
multaneously suppresses both low-frequency sinusoidal noise
and broadband components. Furthermore, the potential sta-
bility risks associated with individual algorithms are avoided
due to the integration of the switching mechanism. The main
contributions of this paper are summarized as follows:

i) We propose a 2-DOF ANC architecture with a novel
switching mechanism, achieving significant NRP for
broadband noise while overcoming the waterbed effect;

ii) The proposed method was validated on an acoustic duct
ANC platform, and its robustness and adaptability in
the presence of abrupt noise changes were demonstrated
through comparative experiments;

iii) We decompose the noise into broadband components and
periodic disturbances, treating them independently, which
allows the method to achieve efficient frequency domain
resource allocation. This approach facilitates an optimal
trade-off between convergence speed and steady-state
error, underscoring its superior performance in dynamic
noise environments.

II. PROBLEM FORMULATION

This paper employs an acoustic duct ANC system that has
been widely used as a test bench for ANC algorithms [20] to
reveal the core idea and effectiveness of the proposed method.
Fig. 1 illustrates the components of a standard acoustic duct
ANC system which depicts two distinct paths: the Primary
Path from noise loudspeaker to error microphone, and the
Secondary Path from anti-noise loudspeaker to error micro-
phone. In this work, we focus on a feedback structure without
a reference microphone. Specifically, the noise source (denoted
as d(n)) composed of low-frequency sinusoidal signals and
broadband white noise, undergoes processing through the
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Fig. 1. The standard ANC system without a reference microphone.

primary path P(z) and transforms into the primary noise to
be eliminated, referred to as d(n). The control signal, denoted
as y(n), needs to traverse the secondary path S(z) before
reaching the cancellation point to attenuate the primary noise.
The strategically positioned error microphone at the open
end of the system collects residual noise denoted as e(n),
providing essential feedback information for control design.
Our goal is to devise the control signal y(n) to minimize the
amplitude of the error signal e(n):

e(n) = d(n) — u(n),

where the anti-noise u(n) is obtained by convolution y(n)
with the impulse response s(n) of the secondary path, i.e.,

s(n) *y(n).

III. HYBRID IMC-LMS CONTROLLER DESIGN

The overall control architecture is depicted in Fig 2, from
which the anti-noise signal w(n) is decomposed into two
components — uy(n) generated by the FXLMS algorithm and
u;(n) produced by the IMC algorithm. Signals ws(n) and
u;(n) processing through the secondary path, can be expressed
as:

up(n) =yyr(n)xs(n), wui(n) =wi(n)*sn), (1)
where y¢(n) and y;(n) represent the outputs from the FXLMS

module and the IMC module in Fig 2, respectively. Alterna-
tively, we can express the error signal as:

e(n) =d(n) — s(n) * (yr(n) + yi(n)). 2)

At the system architecture level, the proposed 2-DOF con-
trol algorithm integrates four core functional modules: the
feedback FXLMS controller (serving as the inner loop), the
outer loop IMC, a discrete notch filter module, and a mode-
switching module. Importantly, the inner and outer loop
controllers do not simply operate in parallel. Instead, they
dynamically switch based on designed performance indexes
through the mode-switching mechanism, ensuring stable and
efficient noise cancellation across various noise conditions.

Fig. 2. The 2-DOF control block diagram the proposed algorithm.

A. The Inner-loop Controller

The objective of the inner loop controller is to reduce broad-
band noise. Hence, in the design of FXLMS, the reference
signal x(n) is obtained by filtering out the low-frequency
sinusoidal component from e(n):

z(n) = e(n) +iy(n) —ei(n),

where ¢ (n) represents the output of the inner loop y¢(n) after
passing through the estimated secondary path S (z) (with the
corresponding impulse response defined as $(n)). We employ
a notch filter module to extract the periodic disturbance
component e (n) from the error signal e(n). The systematic
design procedures of e;(n) are given in Section III-C.

The rest design of FXLMS is standard. Denote the weight
vector of the inner loop controller by w(n) and its filter length
by N. Then, the reference vector x(n) and the secondary
vector x¢(n) are given in what follows:

x(n) = [z(n),z(n —1),...,2(n — N +1)]7,
xg(n) = [zs(n),z5(n —1),...,xp(n = N+ 1),
where = ;(n) = z(n)*5(n). The next step is critical: we utilize

a switching signal sw;(n) to decide whether the adaptation
law for the weight vector updates or not:

if swi(n) =1
else

w(n) + pe(n)xs(n),
w(n),

w(n+1)= { (3)

where its initial value is chosen to be w(0) = 0 € RY, and
1 > 0 represents the adaptation gain for the algorithm update.
The design of switching signal sw;(n) and its logic are given
in Section III-D.

Finally, the output y;(n) of the inner loop controller can be
derived from the following equation:

yr(n) = w' (n)x(n). “)
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Fig. 3. The Bode plot of the notch filter over various values of r.

B. The Outer-loop Controller

To cancel the low-frequency sinusoidal component, we
present an IMC in [17] as the outer loop controller:

i (n+ 1) =i (n) + gR,(cosw)er(n),
fl2(n + 1) = — i (n) + 2(cosw)iaz(n) — gRue1(n),
—m(n) — gRue1(n), ifswsy(n) =1
D

(&)

where the tuning gain g > 0 is sufficiently small, and R,
represents the real part of the frequency response of S(z) over
frequency w of interest. The switching signal sws(n) decides
whether the outer-loop controller is activated or not, and its
design can be found in Section III-D.

C. Discrete Notch Filter

We utilize a discrete-time notch filter to obtain the filtered
low-frequency sinusoidal component from e(n):

#n+1) :[ ? 2r_cgzw ]”E(”)Jr[ 2co£iuzllf ) ]e(”)’
er(n) =[ 0 1 ]i(n) (6)

where Bode plot for several values of the tuning gain r
satisfying 0 < r < 1 is shown in Fig. 3. As r approaches
1, the amplitude and phase of the periodic disturbance e;(n)
increasingly approximate that of e(n) over the corresponding
frequency.

D. Switching Mechanism

We proceed with the design of the switching mechanism:

1) Switch to update of weight vector of inner-loop con-
troller: Define eyp(n) := e(n) — e;(n) and the performance
index as Ji(n) = >"'_ , €3(7) + aje~"", where L, ay,
and by are positive tuning parameters. Note that, eg(n) is
the broadband component of e(n). If its integral over a time
interval is larger than a upper threshold, denoted by §;, we
activate the inner-loop controller. To avoid the wrong switch at
the initial instant, we add an exponential decaying bias term in
J1(n). Additionally, to ensure the system has re-initialization

‘Initialization
1=1 =0

Update FxLMS

System
Output: ,

Input g to Switch 1

Start IMC

Fig. 4. The flowchart of IMC-LMS algorithm operation.

capability for the switching signal, another upper threshold d
satisfying 01 < dz. In summary, swy(n) is designed as

1, if Ji(n) > 01 and swy(n) =1
0, if Ji(n) < é; and swyi(n) =1
1, if Ji(n) > 3 and swi(n) =0
0, if Ji(n) < d2 and swy(n) =0

2) Switch to activate the output of outer-loop controller:
Similarly, we define Jo(n) = Y"_ , €2(7) + age b2,
where e1(n) is the filtered low-frequency sinusoidal compo-
nent, and L, ao, and by are parameters we set. If the integral
of e1(n) over a time interval is larger than a upper threshold,
the IMC is activated. Hence, sws(n) is proposed as

1, if J > §3 and =0
Swg(n—f—l):{ O: if Jo(n) > 3;; swi(n)

As depicted in Fig. 4, we present the flowchart of the
IMC-LMS algorithm, encompassing the primary procedures of
initialization, decision-making, FXLMS adaptation, IMC initi-
ation along with the switching mechanisms and performance
indexes incorporated within this framework. When swi(n)
or swa(n) is configured to 1 or 0, it signifies the activation
or deactivation of the corresponding LMS algorithm or IMC
algorithm.

swi(n+1) = @)

®)

IV. SIMULATION AND EXPERIMENTAL RESULTS

As outlined in the introduction, feedback FXLMS algorithm
[9] may lead to waterbed effect. We first showcase this
phenomenon through numerical experiments. Specially, the
noise source used in the simulation consists of a 100 Hz
periodic disturbance combined with broadband noise spanning
the frequency range of 250-290 Hz. The sampling rate of the
simulation is 5 kHz. The key simulation parameters, x4 and IV,
are set to 0.0002 and 8, respectively.

As illustrated in Fig. 5, the feedback FxLMS algorithm
exhibits a waterbed effect during target frequency suppression,
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Fig. 5. The time domain and frequency domain performance between

feedback FXLMS and IMC-LMS algorithms.

introducing unwanted noise at higher frequencies not present
in the original noise source. This effect manifests as a no-
ticeable “bulge” in the latter part of the time-domain noise
reduction process. In contrast, the IMC-LMS algorithm effec-
tively attenuates the target frequency while avoiding additional
noise at other frequencies. These results highlight the superior
stability and robustness of the IMC-LMS algorithm compared
to the feedback FxXLMS algorithm.

A. System Setup

In the experimental verification, our ANC test platform,
depicted in Fig. 6, consists of a jamming speaker, a control
speaker, power supply, amplifier, two microphones, sampling
unit and computing equipment. In the test platform, the
pipeline has two separate paths for processing noise signals
and anti-noise signals. The noise speaker in the main path
produces analog noise, while the control speaker produces an
anti-noise signal in the secondary path.

The computational device is based on a cRIO-9049 NI 8-
channel controller, equipped with a 1.60 GHz quad-core CPU,
4 GB DRAM, and 16 GB of storage, making it suitable
for real-time control systems. The sampling unit employs
an NI 9250 sound acquisition card with 2 channels and
a synchronous sampling rate of 102.4 kS/s to capture the
residual noise from the error microphone.

For all experiments in the sequels, the sampling frequency
of the equipment was 5 kHz. The impulse response estimation
of secondary channels was obtained by discrete identification
using LMS algorithm §(n). The main parameters N, L are set
to be 16, 1000 respectively. Additionally, the attenuation abil-
ity is quantified in decibels (dB) as Att = 20 log; (axPaxcon )

AMP AN off
B. Composite Noise Cancellation

For the implementation, the composite noise used in the
experiment consists of broadband noise ranging from 250 to
270 Hz, along with sinusoidal noise at 400 Hz for the first
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Fig. 7. Time history of residual error and switching signals of the proposed
algorithm.

30 seconds. After 30 seconds, the noise mutates to be new
composite noise including broadband disturbances between
280 and 300 Hz, along with the 400 Hz periodic component.
The relevant parameters for the noise reduction algorithm, u
and g, are set to 0.00015 and 0.00004, respectively.

1) Convergence of the algorithm: Fig. 7-(a) shows the
microphone data from the IMC-LMS algorithm under experi-
mental conditions. At the beginning 3 seconds, the algorithm is
inactive. During 3-13 seconds, the LMS algorithm undergoes
its weight vector update process. At 13 seconds, the LMS
update procedure terminates while the IMC algorithm initiates
activation. The system converges quickly, with an attenuation
of -18 dB. When the noise source changes at 30 seconds,
both LMS and IMC algorithms sequentially update, achieving
convergence around 37 seconds with an improved attenuation
of -19 dB. This sequence demonstrates the system’s ability
to maintain noise suppression and achieve secondary conver-
gence after sudden noise variations.

2) Adaptability in dynamic noise environments: Fig. 7-(b)
illustrates the switching behavior of the IMP-LMS algorithm.
At initialization, the switch signal sw(n) is active and the
switching signal swq(n) is inactive. At 13 seconds, swi(n)
deactivates and sws(n) activates, which implies the initiation
of periodic signal suppression within the inner loop. At 30
seconds, swi(n) reactivates and sws(n) deactivates, followed
by a third transition at 37 seconds, replicating the initial be-
havior. This experiment demonstrates the effectiveness of the
switching mechanism in coordinating the inner and outer loop
algorithms, ensuring stable noise suppression performance
despite abrupt noise environment changes.
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TABLE I
SOTA COMPARISON RESULTS.

Method | Avg. Att (dB) | Convg. Time (s)

FxLMS -13.9153 29.1346
IMC -1.8981 10.8457
Ours -16.5861 22.3819

C. SOTA Comparison

We compare our algorithm with the feedback FxLMS
algorithm [8] and IMC algorithm [17] in the same noise
environment. The noise source consists of broadband noise
(250-300 Hz) and a 400 Hz sinusoidal signal. The noise
reduction parameters p and g are set to 0.00015 and 0.00003,
respectively, with other parameters consistent with those in
Section IV-A.

Noise Attenuation Efficacy: Fig. 8-(a) shows the time-
domain noise reduction performance of the three algorithms.
In Fig. 8-(b), the radar line extensions along the frequency
axis represent attenuation (dB) at five broadband frequencies
(257, 267, 277, 287, and 297 Hz), with the area indicated the
composite noise cancellation capability across all frequencies.
The IMC algorithm is unable to handle with broadband noise
in the 250-300 Hz range but effectively suppresses the 400
Hz periodic signal. Although the feedback FXLMS algorithm
demonstrates comparable performance to the IMC-LMS algo-
rithm at certain frequency bands (e.g., 297 Hz and 400 Hz),
its performance in other frequency regions is worse than the
IMC-LMS algorithm. Table I shows the FXLMS algorithm’s
average attenuation of -13.9153 dB, lower than our algorithm’s
-16.5861 dB, with a longer convergence time for FxLMS.
These results confirm the superiority and effectiveness of our
approach.

V. CONCLUSION

We propose a novel hybrid active noise control (ANC)
algorithm that effectively mitigates composite noise com-
prising low-frequency sinusoidal disturbances and broadband
white noise. By introducing a switching mechanism to the
filtered-x least mean square (FXLMS) algorithm, our approach
leverages the benefits of FXLMS while eliminating its potential
waterbed effect through the integration of internal model-based

control. The robustness and effectiveness of the proposed
method in addressing broadband noise, even in dynamic noise
environments, are demonstrated through the development of an
ANC verification platform. Although the algorithm currently
achieves noise reduction at a single point, such as at the
position of an error microphone, our future goal is to expand
its application to spatial noise reduction, enhancing its impact
across multiple locations in space.
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