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Abstract—Comprehensive representation is key for improving
controllability in generative neural networks. We present an
approach for learning disentangled latent representations of indi-
vidual instrumental notes, leveraging a Variational Autoencoder-
based architecture designed to operate on spectrograms and
explicitly capture four musical descriptors: timbre, pitch, dy-
namics, and duration. To achieve a structured and interpretable
latent space, we exploit a combination of Gaussian Mixture
priors, adversarial training, and auxiliary supervised clustering,
promoting both compactness and semantic coherence in the
learned representations yet preserving the ability to accurately
reconstruct the original spectrograms. Experimental results and
latent space explorations on the TinySol dataset show the
effectiveness of the proposed approach, outperforming baseline
models and existing methods in key metrics of reconstruction
quality and classification accuracy.

Index Terms—Representation Learning, Latent Space Disen-
tanglement, Audio Generation

I. INTRODUCTION

A musical note can be described via high-level attributes,
the most common being:

o Timbre (T'): the spectral characteristics of the instrument,
or more generally, the instrumental class;

o Pitch (P): the fundamental frequency;

« Dynamics (V'!): the intensity of the sound (e.g., p or mf);

o Duration (D): the temporal duration of the sound.

While in the synthetic realm these parameters can usually be
modeled independently, in the acoustic domain they are more
intertwined due to the physical and mechanical properties of
musical instruments [1], [2]. For instance, P may influence
D in plucked string instruments as higher-pitched notes decay
faster; or V' can affect T', as in bowed strings where increased
bow pressure enhances higher overtones. Still, we are used
to treating these parameters as separate entities: for instance,
Western music notation evolved to represent these descriptors
individually (Fig. 1). Among them, P, V, and D are relatively
straightforward to represent and notate, with 7" remaining the
most challenging to formalize, due to its multidimensional
nature. Although high-level descriptive terminology for timbre
exists [3], it is prone to subjective interpretation; thus, timbre
is usually inferred indirectly via class labels [4]-[6].

Developing a structured and interpretable encoding of such
descriptors is crucial in several applications [7], [8], including

'We denote dynamics as V' - from Velocity - to avoid confusion with D
(duration).
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Fig. 1: Example of a Western classical musical score display-
ing four high-level descriptors: instrument / timbre (7°), pitch
(P), dynamics (V'), and duration (D).

music-related tasks such as audio generation [4], [9], [10],
domain adaptation [11], or computational musicology [12].
A disentangled latent representation refers to as an orga-
nized latent space, in which each dimension corresponds to a
distinct and independent factor of variation in the data [13]. In
such a representation, modifying a single variable influences
only one specific attribute without affecting others.
Comprehensive latent representations are thereby funda-
mental for controllable audio generation, with Variational
Autoencoders (VAEs) being particularly effective in mod-
eling complex distributions in low-dimensional spaces. For
instance, VAEs have been used for text-to-speech generation
[14], timbre modeling [15], and large-scale music genera-
tion [16], demonstrating their ability to learn meaningful
latent structures. However, such representation may lack direct
interpretability, not allowing to find a straightforward and
unique correspondence between the specific attributes and
the generated output. This limitation motivates the need for
latent disentanglement, fostering individual latent dimensions
corresponding to distinct musical characteristics.
Furthermore, as VAEs in their standard formulation often
struggle with multi-modal distributions due to the unimodal
nature of the prior, Gaussian Mixture VAEs (GMVAE:s) [17]
have been introduced in this work; the idea behind the chosen
architecture is to replace the simple prior with a mixture of
Gaussian distributions, providing an inherent structure to their
latent spaces. In the context of audio generation, this property
has proven especially advantageous for timbre modeling [18].
Regarding the generation of instrumental samples, several
approaches have been proposed, employing both supervised
and unsupervised solutions. Unsupervised methods include
multiple auxiliary losses [19] or Jacobian regularization [20].
Supervised methods, on the other hand, promote clusterization
by leveraging classifier regularization [6], contrastive losses
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[5], or adversarial losses [21]. Despite these advancements,
the majority of the literature (e.g., [5], [19]-[24]) deals
with timbre-pitch disentanglement, implicitly assuming that
other musical attributes are inherently encoded within the
broader timbre space. Indeed, explicit control over dynamics
and duration currently remains largely unexplored. Given the
complex interdependencies among these attributes in acoustic
instrumental notes, we deem that a neural-based architecture
should explicitly incorporate all four descriptors.

To the best of our knowledge, only a few works extend
beyond timbre and pitch, e.g. [25], [26], which introduce
musical articulations? as an additional disentangled attribute,
and [27], which shows how a pitch-, volume-, and duration-
invariant representation improves audio quality assessment.

In this work, we present a method for encoding disentan-
gled representations from audio spectrograms, alongside an
exploration of the retrieved latent spaces, focusing on four
common descriptors of timbre, pitch, dynamics, and duration,
which musicians intuitively understand and can manipulate in
performance and composition.

II. PROPOSED METHOD

An overview of the proposed method, including the model
architecture and training method, is shown in Fig. 2. Supple-
mentary material and code are available online®.

A. Architecture Overview

We propose a Multi-Descriptor Gaussian Mixture VAE
(MD-GMVAE) model, that consists of a decoder D, and an
encoder £, comprising a main convolutional feature extractor
¢, which maps an input spectrogram X to a shared feature vec-
tor h = ¢(X), and an ensemble of four variational encoders
Ve, one for each descriptor £ € {T,P,V,D}. The feature
vector h is passed through the four encoders to generate the
corresponding latent variables z¢ = Ve (h).

As in [18], priors follow a mixture of Gaussians p(z¢|ye) ~
N (i, , diag(oy, ), where ye is K-way categorical variable -
K being the number of classes in every . The approximate
posterior distribution ¢(z¢|X) is thus modeled as a Gaussian
with learned mean and diagonal covariance, parameterized by
the variational encoders V€.

Finally, D reconstructs the spectrogram X from the con-
catenated latent variables zs = z7 D zp ® zy D zp.

B. Objectives

The objective of the model £ is to maximize the Evidence
Lower Bound (ELBO), which balances the quality of the
reconstruction while regularizing the latent spaces:

L=Eqz5x) [logp(mzs)}
- Z BDxu (q(z¢|X) [p(ze|ye))

§e{T,P,V,D}

)]

2 Articulation describes how notes are performed, defining unique effects
according to instrumental peculiarities (staccato, legato, etc.)
3https://github.com/gregogiudici/multidescriptor-vae

The first term involves the reconstruction loss, where we
compute the log-likelihood using a combination of a weighted
Mean-Squared Error (MSE) loss and a Huber loss; the second
one is the Kullback-Leibler (KL) divergence, computed for
each descriptor, scaled by a factor 8 [28].

C. Supervised Clustering

To encourage structured latent representations, we introduce
four classifiers C¢, each of them corresponding to one of the
four musical descriptors { € {T, P,V, D}. These classifiers
are implemented as shallow Multi-Layer Perceptrons (MLPs)
with two layers. Their primary function is to predict the
categorical label associated with each descriptor from the
respective latent variables. In addition to the primary objective
defined in Eq. (1), we introduce a supervised classification loss
L¢ to enhance latent space clustering. This loss is formulated
as a Cross-Entropy loss for each classifier, encouraging the
latent space embeddings to align with their corresponding
categorical labels:

Le =

>

£e{P,V,D,T}

CE(ye, Ce(z¢)) 2)

By incorporating this classification loss, we enforce the model
to encode information in specific dimensions and learn struc-
tured latent spaces, where each latent variables z, effectively
captures characteristics related to the corresponding musical
descriptor.

D. Adversarial Disentanglement

Inspired by the study reported in [22], we also implement
a 2-stage adversarial training, to promote each of the four
latent representation to discard information related to all other
descriptors. Indeed, let R¢ be a Remover - shallow 2-layers
MLPs - for each of the four descriptors. During training, we
alternate two stages: in the first one, we freeze the Removers
and add the following term to the loss functions:

Z le
£731 = >\DKL ﬁHRg @ Zp
¢e{T,P,V,D} - pe{T,P,V,D}
p#E

3)
In (3), 1¢ is the all-one vector, |=] is the number of classes
in each descriptor, and A a scaling factor. This hampers the
model to predict a descriptor given the other z,-, and promote
the removal of residual information.
In the second stage, we instead freeze the model and simply
optimize the Removers through the following summary of
Cross-Entropy losses to avoid the collapse of the Removers:

>

¢e{T,P,v,D}

CE Ye, ’Rg

b = )

pe{T,P,V,D}
pF#E

Lr, =
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Fig. 2: The proposed MD-GMVAE includes an encoder £, consisting of a feature extractor ¢ and an ensemble of 4 variational
encoders Vg, one for each descriptor £ € {7, P,V, D}, and a shared decoder D. To improve the performance of the model,
we also employed four Classifiers C¢ for supervised clustering, and four Removers R for adversarial disentanglement.

III. EXPERIMENTAL SETUP
A. Dataset

We conducted our esperiments on TinySOL [29], a publicly
available dataset widely applied in the literature - e.g., [18],
[30], [31]. It contains about 2900 monophonic, 44.1kHz/16-bit
audio files from 14 classical instruments belonging to different
orchestral families: strings, winds and brass. Files last about 6s
and cover the entire range of each instrument, with annotations
for pitch (in semitones) as well as three dynamics (pp, mf,
). Actual duration of each audio sample, though not directly
notated, can be easily retrieved (see Section III-B) and stored
as an additional label for each sample.

B. Preprocessing

The audio samples in the dataset exhibit different lengths.
Thus, at first we trim every audio file, so as to remove silence
with a threshold of -40dB and to retrieve the actual duration
of the samples. We quantize the durations every 250ms to
achieve discrete classes. Then, we resample at 22050Hz, pad
each sample to a fixed length of 5.94s, so as to extract
Mel-Spectrograms with n_bins = 256, n_fft = 1024,
hop_size = 512; in this way we obtain spectrograms of size
(256, 256). Spectrograms are normalized 0-1, to guarantee
that the network focuses on spectral relationships rather than
absolute values. Finally, we split the dataset into 80% train,
10% validation, and 10% test.

C. Hyperparameters and Training

As we aim at minimizing the latent space dimensionality,
we initialize our model with latent dimensions equal to Ly =
8 for Vr, and Lpy,p = 4 for the other encoders. Linear
layers in &, D are initialized with Xavier initialization, while
we used the Kaiming one in C¢ and R¢ [32]. The model is
trained on a single Nvidia RTX 4090 GPU for a maximum
of 1000 epochs, with Early Stopping in validation to prevent
overfitting. We use Adam optimizer with batch size BS = 64
and an initial learning rate LR = 1 X 1073, adjusted via a
plateau LR scheduler. Similarly, the scaling factors S and A

in Eq. (1) and (3) are dynamically incremented using a fixed
scheduler over epochs.

As baselines, we also readapt the architecture as a unimodal
VAE and a MD-VAE, keeping the same amount of layers. In
the former, the classifiers receive the whole zy 4 of latent
dimension L = 8 + 4 + 4 + 4; in the latter, each classifier
receives separate unimodal zr, zp, zy, and zp.

IV. RESULTS AND DISCUSSIONS

Our method overall returns optimal spectrogram recon-
struction, while also proving robust in classification tasks on
unseen data for all the four descriptors. Among them, V'
exhibits the worst classification results. Despite amplitude-
related features are generally overlooked in the literature as
they are easy to compute [5], we argue that in the context
of acoustic instrument their close relationship with timbre
supports the need of a multidescriptor approach. In addition,
with respect to the unimodal baselines, the use of multiple
distributions promoted clear clustering in the latent spaces,
with the inclusion of the four Removers slightly improve
overall results in classification tasks (see Table I).

Tace 1 | Pace T | Vace 1 | Dace 1 | Rioss +
VAE + C¢ 0.938 | 0.931 | 0.876 | 0.891 0.0156
MD-VAE + C¢ 0.945 | 0.865 | 0.803 0.909 | 0.0174
MD-GMVAE + C¢ 0.996 | 0.993 | 0.883 0.989 | 0.0113
MD-GMVAE + C¢, R¢ | 1.000 | 0.996 | 0.898 | 0.989 | 0.0111

TABLE I: Performance of VAE with Multi-Descriptor (MD),
Gaussian Mixture (GM), Classifiers (C¢), and Removers (R¢).

Dataset | L7 / Lp | Tace T | Pace T
Luo et al. [18] TinySol 16/ 16 1.000 | 0.996
Luo et al. [19] TinySol 8/- 0.892 —
Tanaka et al. [25] | RWC [33] | 64 /32 0.981 | 0.816
Our TinySol 8/4 1.000 | 0.996

TABLE II: T" and P accuracy comparison with similar meth-
ods in literature.
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Despite the reduced latent dimensionality and the increased
latent complexity due to the increased attributes to be disentan-
gled, accuracies on 7" and P are in line with similar methods
in the literature (see Table II).

Fig. 3: t-SNE on MD-VAE’s zp (left) and on full MD-
GMVAE’s zp (right), both color-coded by 7' labels.

Pitch (zp) Dynamics (zv) Duration (zp)

Fig. 4: t-SNE on full MD-MGVAE'’s zp, zy, and zp: (top)
color-coded by respective labels, with P being reduced to
octaves; (bottom) color-coded by T’ labels.

A. Latent Space Exploration

We perform a set of experiments to verify the effectiveness
of our approach.

Fig. 5: Examples of interpolation for e € {—1,—0.5,0,0.5,1}

(ordered left to right) over two samples, across zs (top) and
only zr (bottom).

At first, we aim at exploring the overall structure of the
learned latent representation. We apply dimensionality re-
duction using t-SNE on the latent spaces retrieved by the
MD-VAE and full MD-GMVAE encoders. The introduction
of classifiers on the latents naturally forces the models to
separate information; still, for each descriptor, we observe
better-defined clusters in the latter, indicating that the MD-
GMVAE has learned more meaningful structures in the data
with respect to the MD-VAE, where clusters are overall less
defined. (see Fig. 3).

Next, we verify the disentanglement of the four descriptors.
By color-coding each dimensionality reduction plot by labels
belonging to a different descriptor, e.g., P color-coded by T,
then the plots appear unorganized without any notable label
cluster, indicating that each latent representation is effectively
disentangled and no relevant information of a given descriptor
leaks into others latents (see Fig. 4).

Then, we perform stepped sample-to-sample interpolation:
given two latent representations z5 and z%, extracted from
two samples, we first compute full interpolation over la-
tent representations as z(a) = (1 — @)z} + az%, o« €
{-1,-0.5,0,0.5,1}. Secondly, for every descriptor £ €
{T,P,V,D}, we interpolate only along z¢, keeping other
dimensions fixed as z¢(a) = (1 — @)zf + oz, zs\-¢(a) =
z5 _¢- Bach interpolated latent representation z(a) is then
decoded back into the data space, producing a sequence that
smoothly transitions between the original samples (see Fig. 5).
In this experiment, we occasionally observed some artifacts in
the reconstructed spectrograms: we argue that this is motivated
by the fact that operating over discrete classes does not always
allows for meaningful in-between scenarios.

Finally, we operate 5-step sweeps across every individual
dimension of a zgs extracted from a single sample, exploring
how the model learned to organize information. Specifically,
for each dimension zs ;, we substitute its value with a given
«, while keeping all other dimensions fixed, e.g., zs 1(®) =
[20,,22,...2,], a € {—=1,-0.5,0,0.5,1}. While some
dimensions influence subtle details (e.g., small variations in
frequency magnitudes or in the noise floor), others appear
strongly related to specific attributes, such as envelope tran-
sients, high spectral components, or single-component decay
(see Fig. 6).

Fig. 6: Examples of single-dimension sweeps for a €

{-1,-0.5,0,0.5,1} (ordered left to right) for zr; (top) and
zp,1 (bottom).
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V. CONCLUSIONS

In this paper we presented a novel approach to achieve a
compact and disentangled latent representation of instrumental
audio samples using four descriptors, commonly used to
describe individual notes. Through a series of experiments, we
explored the latent spaces produced by our model and verified
the effective disentanglement between different attributes, as
well as the reconstruction capabilities given a reduced -
and therefore, easily interpretable - latent representation. We
support that precise disentanglement over multiple descriptors
could both provide a beneficial framework for creative appli-
cations and foster representation learning tasks.
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