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Abstract—Characterizing and modeling the spatial radiation of
musical instruments is a challenging task in acoustics due to the
complex and high-dimensional nature of their directivities. In this
paper, we address this challenge by presenting a comprehensive
analysis of musical instrument directivities using Spatial Com-
plexity, a novel metric that quantitatively describes how energy is
distributed across spherical harmonics coefficients. Lower Spatial
Complexity values indicate a concentration of energy in lower-
order spherical harmonic components, corresponding to nearly
isotropic radiation patterns, while higher values reflect energy
distributed across higher-order harmonics, denoting highly di-
rectional and intricate beam patterns. To demonstrate the utility
of this metric, we analyze an extensive dataset of measured
instrument directivities, uncovering systematic correlations be-
tween complexity and physical radiation properties. Further, we
train a rotation-equivariant neural network designed to preserve
the geometric symmetries of spherical harmonics representations.
The model’s latent space organizes directivities along gradients
tightly aligned with complexity, showing the metric’s ability
to capture fundamental attributes of spatial radiation. These
findings highlight the effectiveness of complexity as a concise
and interpretable analytical tool for comparing and categorizing
instrument directivities, with potential applications in acoustic
research, instrument design, and spatial audio technologies.

Index Terms—directivity, spatial complexity, spherical har-
monics.

I. INTRODUCTION

Directivity describes how an acoustic source emits sound in
space, outlining the variation in sound intensity with respect to
different directions. In the context of musical instruments, the
directivity pattern significantly influences both the perceived
sound quality and the effectiveness of spatial audio repro-
duction [1]-[3]. Traditionally, researchers have focused on
capturing high-fidelity directivity measurements in controlled
settings using anechoic chambers [4], [5] or near-field acoustic
holography with scanning microphone arrays [6]—[8]. Alterna-
tive procedures suitable for low-reverberant settings have also
been introduced in [9]. Perceptual studies [10] have shown
that listeners can discern differences between omnidirectional
and directional sources. Moreover, fluctuations in directivity
due to musician movements have been found to affect listener
perception in both anechoic and reverberant conditions in
[11], while in [12] the significance of capturing frequency-
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dependent directivities over simplified average representations
is demonstrated.

More recently, the increasing demand of spatial audio and
immersive technologies [13], [14] has renewed the interest
in modeling and characterizing the directivity. In fact, the
modeling of directional sound sources is required for enhanced
sound field reconstruction for immersive scene navigation [15],
[16], and different simulation frameworks incorporate directiv-
ity through boundary and finite element methods (FEM) [17],
numerical simulations [18], and geometrical acoustics [19].

Nonetheless, systematic and objective characterization of
directivities of musical instruments remains a challenging task.
Typical methods of analysis are limited to visual comparison
or simple metrics as in [20], which presents a major dataset
comprising directivities of forty-one orchestral instruments.
In [21], the instruments have been measured during live
performances by musicians, showing that the presence of
the performer’s body tends to smooth directivity patterns.
However, while [21] offers valuable visual insights into these
patterns, its evaluation remains largely confined to graphical
analysis without a systematic characterizations. Thus, in order
to compare the directivities several metrics based on spherical
harmonics correlations [22], [23] and more recent composite
measures [24], [25] have been proposed to encapsulate the
multifaceted nature of instrument directivity.

In addition, deep learning has recently driven signifi-
cant advances in audio processing [14], [26]-[29], particu-
larly through feature-learning architectures that extract low-
dimensional latent spaces representations from raw signals,
enabling a broad class of applications [26], [27]. When applied
to musical instrument directivities, data-driven methods could
reveal latent features that are not evident from traditional
directivity analyses. However, the development of succinct,
robust metrics to compare directivities within these learned
representations remains an open challenge. Establishing such
metrics is pivotal for evaluating how faithfully latent spaces
capture complex directivity patterns, especially when compar-
ing multiple instruments, playing conditions, or performance
nuances.

In this paper, we propose a novel metric called Spatial
Complexity, which captures how acoustic energy is distributed
among spherical harmonic coefficients. Through an extensive
analysis on a dataset of measured instrument directivities
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[20], we show that Spatial Complexity correlates closely with
fundamental radiation properties, thus providing a concise
and interpretable descriptor. To further demonstrate its utility,
we train a rotation-equivariant neural network [30] designed
to handle spherical harmonics representations. The model’s
latent space naturally arranges instrument directivities along
gradients that align tightly with Spatial Complexity, showing
the metric’s capacity to encapsulate essential features of spatial
radiation. Overall, our findings reveal Spatial Complexity as a
powerful analytical tool for comparing and categorizing instru-
ment directivities, with broad applications in acoustic research,
instrument design, and emerging spatial audio technologies.

II. SIGNAL MODEL

As defined in [9], let us consider an acoustic source,
whose acoustic center (i.e., the effective origin of radiation) is
placed at the center of a three-dimensional coordinate system.
Consider a field point far from the source and expressed in
spherical coordinates by the triplet r = (¢, 6,7), where r is
the radial distance from the acoustic center, ¢ is the azimuth
and @ is the co-elevation. Under a far-field approximation (i.e.,
r is sufficiently large) the source’s free-field pressure Py (r,w)
at angular frequency w can be written as [31]

eier

Py(r,w) = S(w)D(¢,0,w), (1)
where S(w) is the Fourier transform of the source signal
at the acoustic center, and D(¢,0,w) € L%*(S?) a complex
square-integrable function describing the source directivity
[32] depending on direction (¢, #) and frequency w. The mag-
nitude | D (¢, 6, w)| of the directivity function, which describes
the energy distribution of the directional sound radiation, is
commonly referred to as radiation pattern or polar pattern.
Provided that the source signal S(w) and the measurement
position r are known, the polar pattern can be obtained by
inverting Eq. (1) as
[Py (r,w)
|D(¢305w)| r |S(w)| . (2)

It is worth noting that the signal model relies on the assump-
tion that the source can be approximated as a point-like emitter
and holds if the acoustic source exhibits a linear behavior with
respect to the energy of the excitation signal S(w) [9].

Given its definition, the polar pattern in Eq. (2) can be
conveniently represented in an orthonormal basis on the unit
sphere. A commonly employed choice is the set of spherical
harmonics SHs {Y,7* (¢, #)}, which can represent any arbitrary
function on a sphere [31]. In particular, one may expand the
polar pattern, by means of the SH expansion [31], as

N n
ID(¢.0,w)[ =" > Ci(w)Y,"(9,0), 3)
n=0m=—n
where Y,"(¢,0) are the real (or complex) SH functions
of degree n and order m, C)*(w) are frequency-dependent
expansion coefficients, and N is the maximum expansion
order. Without loss of generality, we employ real SHs [33] in

this work. From Eq. (3), it follows that (N + 1)? coefficients
are required to fully characterize a directivity of order V.

III. SPATIAL COMPLEXITY OF SOURCE DIRECTIVITY

Building on the signal model and directivity framework
presented in Section II, and similarly to [34], we now introduce
a concise, quantitative metric that characterizes the spatial
distribution of acoustic energy in directionality patterns. We
call this measure the Spatial Complexity (SC). Conceptually,
SC condenses the level of directional detail required to char-
acterize a radiation pattern into a single scalar. In doing so,
it facilitates a compact comparison between instruments or
sources that would otherwise require detailed inspection of
the complete directivity function. Formally, we define SC at
angular frequency w as

ZN:O An ||Cn(w)||2
SClw) = =2 ,
) S o ICH(w)ll2

where C,,(w) € R?""1 is the vector of real SH coefficients
of order n, || - || denotes the Euclidean ({3) norm, and
An is a scalar weight that can emphasize (or de-emphasize)
energy in each SH order. Specifically, ||C,,(w)|l2 measures
the total energy at SH order n, while multiplying by A,, in the
numerator can penalize or reward higher orders more strongly,
depending on the desired notion of complexity. Hence, SC(w)
is a dimensionless ratio that remains invariant under any global
scaling or rotation of the radiation pattern. Larger values of
SC(w) indicate that a significant portion of the total radiation
energy is carried by higher-order terms (i.e., more finely
structured directivity), whereas smaller values suggest that the
pattern is dominated by lower orders and varies more slowly
with angle, indicative of a more uniform energy distribution. In
the limiting case, the lower bound of SC(w) corresponds to an
ideal omnidirectional source that radiates energy isotropically.

“4)

A. Choice of weighting factors \,

Building on Eq. (4), it is clear that the choice of weights
Ap is crucial in defining the SC metric. In our formulation,
these weights determine the relative contribution of each SH
order to the overall measure of complexity. To ensure that
energy concentrated in higher SH orders (which correspond
to finer angular variations) yields a higher complexity value,
we impose a strictly increasing sequence of weights

A< AL <o < An. &)

This condition guarantees that directivity patterns with signif-
icant energy in higher orders receive larger SC values, while
patterns dominated by lower orders yield lower SC scores.
Furthermore, we enforce a coherence condition
M—2
Aar > MAy—1 = ) A, (©)
n=0

which, while being quite strict, ensures that even the least
complex pattern of order M is still more complex than the
most complex pattern of order M — 1. By selecting all A,
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to satisfy both the monotonicity and coherence conditions,
the SC metric provides a well-defined, monotonically increas-
ing and comparable measure of complexity that aligns with
the intuitive notion that directivity patterns exhibiting finer
angular detail (i.e., energy at higher SH orders) should be
quantitatively distinguished from those with simpler, lower-
order distributions.

IV. ANALYSIS OF DIRECTIVITY DATA

We now focus on practical analyses of measured directivity
patterns to demonstrate the utility of the SC metric. For
the tests, we exploit the dataset presented in [20], which
offers an extensive collection of directivity measurements
from 41 modern and historical musical instruments, each
recorded while playing various single notes. Captured with a
32-channel microphone array in an anechoic environment, the
dataset provides high-resolution spatial radiation patterns that
capture the frequency-dependent behavior of the instruments.
For simplicity, our analyses focus on the polar patterns at
the fundamental frequency f; of each note, a component that
typically dominates the acoustic energy and encapsulates the
instrument’s core tonal characteristics. This focus offers a
robust and consistent basis for comparing directivity across
instruments while reducing the complexity associated with
overtones harmonic content. Given the 32 measurement points
available and by means of the SH expansion detailed in Eq. (3),
we can fully characterize the directivities using SH coefficients
up to order N = 4, thereby enabling the application of the
SC metric to quantify the angular variability in the radiation
patterns. In the following experiments, we set \,, in order to
respect both constraints defined in Eq. (5) and Eq. (6) Starting
from the initial value \g = 1, the other values are set to
A1 =2, Ay =4, A3 =10, Ay = 34.

A. Dataset analysis

As an initial analysis, we examine the distribution of SC
across all the directivity patterns in the considered dataset
[20]. The histogram in Fig. 1 illustrates that the majority
of the SC values are clustered in the lower range. This
indicates that, for most instruments, the energy distribution
is predominantly confined to the lower SH orders, leading to
simpler, more isotropic radiation patterns. Such behavior is
typically observed in instruments that either inherently exhibit
an isotropic directivity or tend to radiate more uniformly
when playing lower notes [2]. For instance, Fig. 2a shows
the directivity pattern of a historical basset horn playing note
B2 (118.94 Hz), yielding a SC value of 2.75. This example
demonstrates how a lower SC value aligns with a relatively
uniform energy distribution. In contrast, a small subset of
the dataset exhibits higher SC values, which reflect direc-
tivity patterns with significant contributions from higher SH
orders. This implies more pronounced angular variations and a
greater degree of spatial intricacy, possibly arising from unique
structural features or specific excitation conditions [2]. As an
example, Fig. 2b shows the directivity pattern of a modern
viola playing note G#g (1711.61 Hz), with an associated SC
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Fig. 1: Histogram of SC values of directivities in [20].
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Fig. 2: Directivity pattern of (a) a historical basset horn playing
note B (118.94 Hz) with SC = 2.75, and (b) a modern viola
playing note G#g (1711.61 Hz) with SC = 8.17.

value of 8.17. This case illustrates how a higher SC value cor-
responds to a more complex and detailed angular distribution
of radiated energy. These observations underscore the utility
of the SC metric in distinguishing between instruments with
fundamentally different radiation characteristics, providing a
coherent and interpretable measure of directional detail across
the dataset.

B. Latent space analysis

As a further study, we employed the SC metric within a
feature learning framework to investigate its effectiveness in
analyzing and creating a latent representation of directivity
data. Inspired by the work in [35], we have chosen to
employ an equivariant autoencoder [30], [36]. Equivariant
neural networks have found widespread application in fields
where the data or underlying phenomena exhibit symmetry,
such as computer vision or molecular modeling [30]. An
equivariant neural network is built so that transformations
(such as rotations) in the input space lead to predictable,
corresponding transformations in the latent feature space. This
property is especially critical for directivity data, as it is
naturally defined on the surface of a sphere, exhibiting inherent
rotational symmetries, meaning that the physical characteris-
tics of an acoustic source’s radiation pattern are invariant to
its orientation. By using an equivariant architecture, the model
is better able to capture the intrinsic spatial structure of the
data, ensuring that the learned features are robust to rotations
while preserving physical interpretability. In our work, we
exploit the architecture proposed in [30], namely an SO(3)-
equivariant autoencoder. This model is designed to preserve
equivariance with respect to the group of three-dimensional
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Fig. 3: 2D t-SNE representations of the latent space (a) before training, (b) after training with L4414, and (c) after training
with Lg¢c. Colors indicate the normalized SC value of each data sample in the test set.

rotations, denoted by SO(3), consisting of all rotations about
the origin in the three-dimensional Euclidean space.

1) Data loss: As a first experiment, we evaluated the
learned representations of the employed SO(3)-equivariant
autoencoder architecture [30]. The model was first trained on
a designated portion of the dataset, where the input consisted
of the SH coefficients representing the directivity patterns. At
each layer, the data is characterized by (N + 1)? coefficients
and M multiplicities (similar to the channel dimension in con-
volutional neural networks), and the encoding layers iteratively
and equivariantly transfer information from higher orders to
lower ones, with the decoding layers performing the reverse.
As a result, the network learns a so-called disentangled latent
space, consisting of an invariant embedding which captures
the intrinsic properties of the directivity pattern independent
of orientation, and an equivariant frame that describes the data
orientation. The loss function used for training is

Liata = MSE(C, C), (7)

where MSE is the mean squared error operator, C are the
coefficients of the SH representation of the directivity pattern
in input to the network and C are the coefficients of the
SH representation of the reconstructed directivity pattern in
ouput to the network. After training, we extracted the latent
features for samples in the validation set. To visualize the
distribution of these representations, we applied the well-
known t-SNE [37] dimensionality reduction technique to the
latent space. The resulting 2D t-SNE projection illustrates how
the validation samples are positioned relative to each other
in the learned feature space, providing insight into whether
the model has successfully captured the intrinsic structure of
the directivity data. Fig. 3a displays the distribution of test
data samples in the latent space before any training is applied.
The colormap, normalized for clarity, represents the SC value
for each sample. At this stage, the latent space does not
exhibit any discernible organization related to SC, indicating
that the raw features do not yet capture the intrinsic structure
of the directivity patterns. In contrast, Fig. 3b shows the
latent space after 2000 training epochs. The same normalized
colormap is used to denote the SC values, but now the
data points are clearly organized according to their SC. This

structured arrangement demonstrates that the training process
has successfully embedded the SC information into the latent
representation, making it easier to distinguish between patterns
based on their SC. This result shows that naturally the training
process effectively organizes the latent space according to the
SC metric, making it easier to distinguish between different
directivity patterns.

2) Spatial Complexity loss: As a second experiment, we
tried to further embed spatial information into the latent
representation by adding a SC loss term in the loss function
used to train the model. In particular, the loss function is

Lsc = aMSE(C, C) 4+ S MSE(SC(C),SC(C)), (8)

where « 100 and 8 = 10 are two weighting factors.
By directly penalizing discrepancies in SC, the network is
encouraged to learn latent representations that not only capture
overall acoustic features but also faithfully reflect the detailed
angular variations that are critical for distinguishing between
different instruments. The obtained latent space after training
is represented in Fig. 3c. It is clear that the data samples are
clustering with respect to SC in the latent space, indicating that
incorporating Lg¢ in the loss function, effectively guides the
model to capture the intrinsic variations in directivity patterns.
This results in similar SC values grouping together, which not
only makes the latent representation more interpretable but
also enhances the model’s ability to differentiate and analyze
the acoustic characteristics of different instruments.

V. CONCLUSION

In this work, we introduced a novel metric, namely SC,
to quantify the directional variability of acoustic radiation
patterns. By decomposing the source directivity into SH
components and appropriately weighting them, the SC met-
ric condenses the degree of directional detail required to
characterize a radiation pattern into a single, interpretable
scalar. We conducted a first analysis on directivity data from a
diverse set of musical instruments, computing the distribution
of SC inside the data set and showing that most instruments
exhibit predominantly lower-order radiation characteristics,
while a select few display marked complexity with significant
contributions from higher-order terms. Next, we assessed SC
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in a deep-learning context by exploiting an SO(3)-equivariant
autoencoder and examining how its latent representations
capture intrinsic spatial features. In our first analysis, where
the model was trained solely on a data loss, t-SNE visualiza-
tions revealed that the latent space naturally organized itself
according to SC values. In our second analysis, embedding
the SC metric directly into the loss function resulted in even
stronger clustering, indicating that explicitly encouraging the
network to preserve spatial complexity significantly enhances
the separation of directivity patterns in the latent space. These
complementary analyses confirm that the SC metric is not
only inherently captured during training but also serves as a
powerful guide for learning more structured and interpretable
representations. Future work will extend these findings by
incorporating multi-frequency analyses and a rigorous study
of the impact of weighting factors \,, in SC.
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