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Abstract—Musical instrument classification in the symbolic
domain is a challenging task due to the inherent differences
between MIDI representations and their corresponding acoustic
signals. In this study, we propose a contrastive learning-based
framework, Contrastive Audio-MIDI Learning (CAMIL), to im-
prove MIDI-domain instrument classification by leveraging both
symbolic and audio information. In our approach, we use MIDI
embeddings as anchors, pairing them with their corresponding
audio embeddings as positive samples and audio embeddings
from different instruments as negative samples. By optimizing
a contrastive loss function, our model learns to align MIDI
embeddings with their corresponding audio representations while
pushing apart embeddings of different instruments. We evaluate
our method on the Lakh MIDI dataset and demonstrate that it
improves instrument classification performance in the symbolic
domain. Our results highlight the potential of contrastive learning
in bridging the gap between audio and MIDI representations for
more robust musical instrument recognition.

Index Terms—Musical instrument classification, Symbolic-
domain, MIDI, Contrastive Learning

I. INTRODUCTION

Musical instrument classification is a fundamental task in
music information retrieval (MIR), supporting downstream
applications such as automatic transcription, orchestration
analysis, and composition assistance. Although instrument
classification has been studied using symbolic (e.g., MIDI)
and audio (e.g., spectrogram) representations, a substantial gap
between these modalities hinders their integration for accurate
and robust classification.

Previous work has primarily focused on approaches using
audio signals. These classifications include methods targeting
single notes, performance data of a certain length, and entire
music pieces. Such models mainly learn and classify instru-
ments based on their timbral features.

Although musical instrument classification using symbolic
representations such as note sequences has been explored [1],
[2], it has received less attention than its audio-based coun-
terpart. This is partly due to the lack of large-scale symbolic
datasets with reliable instrument labels and the inherent dif-
ficulty of inferring instruments from symbolic input, where
timbral cues are not explicitly available.

Despite its difficulty, symbolic instrument classification is
crucial for symbolic transcription, composition support, and
semantic retrieval in music archives. Moreover, it provides

ISBN: 978-9-46-459362-4

426

useful representations for downstream tasks such as genre
recognition, style transfer, and conditional music generation.
Despite its challenges, this task remains highly valuable.

To bridge this gap, we propose Contrastive Audio-MIDI
Learning (CAMIL), a novel framework that uses contrastive
learning to align MIDI and audio representations of musical
instruments. Each MIDI representation is treated as an anchor,
paired with a positive audio sample from the same instrument
and negative samples from different instruments. The model
is trained to minimize the distance between matching Audio-
MIDI pairs while maximizing the distance to mismatched
ones, thereby learning a shared embedding space where se-
mantically similar pairs are close and dissimilar ones are
separated.

This study aims to enhance symbolic music processing
by leveraging timbral information contained in audio signals.
When audio is converted into symbolic representations such
as musical scores, timbral characteristics are typically lost.
However, audio signals capture not only pitch and duration but
also rich information about timbre and expressive performance
nuances. Instruments with similar physical structures often
share timbral and performance characteristics. Appropriately
extracting and associating this knowledge from audio with
symbolic representations provides valuable cues for effective
instrument classification.

Contrastive learning has proven effective in aligning rep-
resentations across different modalities. CLAP (Contrastive
Language-Audio Pretraining) [3] learns joint embeddings for
audio and text, while CLIP [4] does the same for vision-
language tasks. Inspired by these methods, we apply con-
trastive learning to connect MIDI and audio representations,
enabling robust instrument classification.

The contributions of this paper are as follows:

o We propose Contrastive Audio-MIDI Learning (CAMIL),

a novel framework that aligns MIDI and audio representa-
tions via contrastive learning for robust symbolic-domain
instrument classification.

e We demonstrate that CAMIL achieves comparable or
superior performance to supervised baselines, even under
unsupervised settings.

o We evaluate CAMIL on the Lakh MIDI Dataset, analyz-
ing data efficiency and the effect of different negative
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Fig. 1: Network Architecture of the Contrastive Audio-MIDI
Learning

sampling strategies.

II. RELATED WORK

Research on musical instrument classification has predom-
inantly focused on audio-based methods. Various techniques,
including machine learning and deep learning approaches,
have been used to classify musical instruments based on
their timbral features. Recent works have leveraged deep
learning architectures, such as convolutional neural networks
(CNNs) and recurrent neural networks (RNNs), for instrument
classification tasks [5], [6]. In addition, hierarchical classifica-
tion methods have been proposed to improve generalization
to unseen instrument classes by exploiting inter-instrument
relationships. For example, Garcia et al. [7] introduce a hier-
archical few-shot learning approach that leverages instrument
taxonomy to improve accuracy with limited data.

Compared to audio-based classification, instrument classifi-
cation from symbolic representations has been less explored.
Ji et al. proposed a language model-based approach to classify
eight monophonic instruments from MIDI sequences [1].
Sawada proposed a deep learning-based framework that uti-
lizes MIDI note sequences for instrument classification. The
method improves instrument classification by distilling knowl-
edge from an audio signal model (teacher model) into a MIDI
sequence model (student model) [2].

Previous studies have explored cross-modal retrieval by
learning correspondences between sheet music images and
audio [8], [9], primarily to improve music retrieval. In contrast,
our goal is to improve symbolic-domain instrument classifi-
cation by leveraging timbral information from audio signals
through contrastive learning. We propose to align MIDI and
audio representations during training to enrich symbolic rep-
resentations with acoustic characteristics, which are typically
lost when converting audio into symbolic formats such as
scores.

Multimodal learning has been widely investigated in var-
ious MIR tasks, including music emotion classification and
music generation [10], [11]. Deep learning methods have been
employed to model relationships between different modalities,
such as MIDI and audio, to improve classification performance
[12]. However, many existing approaches require both modal-
ities during inference, which limits their practical application.
Our method differs in that we leverage audio information only
during training to enhance MIDI-based classification, ensuring
that no audio data is needed at inference time.

Contrastive learning has proven effective in cross-modal
representation learning. For example, CLIP [4] and CLAP [3]
align vision-language and audio-language modalities, respec-
tively, by learning joint embeddings. Inspired by these ap-
proaches, we apply contrastive learning to bridge MIDI and
audio representations, enabling symbolic-domain instrument
classification without requiring audio input at inference time.

III. SYMBOLIC-DOMAIN MUSICAL INSTRUMENT
CLASSIFICATION

A. Musical Instrument Classification Task Setting

Musical instrument classification has been explored across
diverse input types and task settings. In the audio domain,
targets include single notes, time-series segments, or entire
tracks, while in the symbolic domain, classification is typically
performed on monophonic or polyphonic note sequences.
Depending on the setting, the task can be formulated as either
single-label or multi-label classification. Our work focuses on
symbolic-domain classification using phrase-level polyphonic
sequences, where timbral cues are not directly available.

In this study, we address symbolic-domain instrument clas-
sification from note sequences, following the setting of [2].
Given a segment of MIDI data, our goal is to predict the
performing instrument based solely on its note sequence,
regardless of whether it is monophonic or polyphonic. We
represent MIDI data as piano rolls and focus on both tempo-
ral transition patterns and simultaneous note structures. The
classification is performed on two-measure segments.

Let X = {x1,22,...,zn5} be a set of symbolic music
segments extracted from MIDI sequences. In this study, we
focus on classifying musical instruments from note sequences
in the symbolic domain. Each segment is extracted as a fixed-
length span corresponding to two measures within a MIDI
sequence.

The goal of the task is to predict the instrument labels
associated with a given note sequence segment . We define
the set of instrument labels as Y = {1,2,..., K}, where
K is the total number of instrument classes, and y € Y
denotes the ground truth label for the segment. We formulate
the instrument classification task as a multi-class classification
problem, where the model f maps a note sequence segment
x to a single instrument label, such that f : x — y. Each
segment is treated as an independent sample during training
and inference, and the model predicts the instrument label for
each segment individually.
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B. Contrastive Audio-MIDI Learning (CAMIL) for Symbolic-
domain

We propose Contrastive Audio-MIDI Learning (CAMIL) to
bridge the gap between MIDI-based and audio-based represen-
tations of musical instruments (see Fig. 1). Our model learns
a joint embedding space for symbolic and audio representa-
tions of music segments. Given an input symbolic sequence
and its corresponding audio representation, we employ two
separate encoders: fy; for MIDI-based melodies and f for
audio. These encoders transform the inputs into a common
feature space as follows: hypr = fM(XMIDI)7 haugio =
fa(XAudio), where xyvipr and Xaudio denote the MIDI and
audio inputs, respectively, and hypr, haugio are their corre-
sponding embeddings.

To measure the similarity between embeddings, we compute
the Euclidean distance d = ||hyipr — haudiol|2- The model
is trained to minimize this distance d for positive pairs (i.e.,
matching Audio-MIDI pairs), while ensuring that negative
pairs (non-matching pairs) are pushed apart using a contrastive
loss function (See Section III-D).

C. Positive and Negative Pair Selection

In our contrastive learning framework, we define the anchor
and its corresponding positive and negative samples as follows:

o Anchor: A MIDI-based representation of a musical seg-
ment played by a specific instrument.

« Positive sample: The corresponding audio representation
of the same musical segment, aligned with the anchor.

+ Negative sample: An audio representation from a differ-
ent instrument or from a randomly selected segment that
is not aligned with the anchor.

Given a dataset containing N samples, each MIDI repre-
sentation xMP! is paired with a corresponding audio repre-

sentation x:*4°, forming a positive pair:

MIDI _ Audi .
Ppositive:{(xi aXiu 10) |7':1a25"'aN}' (1)
In our framework, we consider two types of negative
sampling strategies:

« Random negatives (unsupervised setting): Negative
samples are randomly selected from the dataset without
considering class information. As a result, negative pairs
are not semantically aligned with the anchor and may still
belong to the same instrument class. Formally, random
negatives are defined as:

Phegative = {(X%\/HDI’ X?udio) | P F ]} 2

o Class-based negatives (supervised setting): Negative
samples are selected from audio representations belong-
ing to different instrument classes. This strategy leverages
class labels to ensure stronger semantic separation. The
class-based negative pairs are defined as:

Pnegative = {(X?/IIDIa X;\udio) | C; 7é Cj}7 3

where ¢; and c; denote the instrument class labels of the
i-th and j-th samples, respectively.
By incorporating both random and class-based negative
sampling strategies, our framework supports both supervised
and unsupervised training settings.

D. Loss Function

In order to learn meaningful representations of the input
data, we adopt a contrastive loss [13] during the pre-training
phase. This loss encourages the model to minimize the dis-
tance between matching pairs (positive pairs) and maximize
the distance between non-matching pairs (negative pairs), help-
ing the model to distinguish between similar and dissimilar
inputs. The contrastive loss L. is defined as follows:

Lowe =E [2-d*+ (1 - 2) - max(0,a — d)?] 4)

where z € {0,1} is a binary label indicating whether the pair
is a positive match (z = 1) or a negative pair (z = 0), and
« is a margin hyperparameter that separates negative pairs
beyond a certain distance. d represents the distance between
embeddings.

Once the model has been pre-trained, we proceed to fine-
tune it for the specific task of instrument classification. For
this fine-tuning step, we use a cross-entropy loss to optimize
the model.

E. Model Configuration

As shown in Fig. 1, our model consists of two encoders: a
MIDI encoder and an audio encoder. Both encoders share a
common architecture based on ResNet [14], which is known
for its ability to learn deep representations through residual
connections. The ResNet architecture has been successful in
various domains, making it an ideal choice for our task of
extracting meaningful features from both MIDI and audio data.

Both encoders are based on a ResNet architecture. The
Initial Convolution and Pooling stage consists of a 7 X 7
convolutional layer with 64 filters and a stride of 2, followed
by batch normalization and ReLU activation. A 3 X 3 max
pooling layer with a stride of 2 is then applied. The Residual
Blocks are organized into four stages with filter sizes of 64,
128, 256, and 512. Downsampling is applied at the first block
of each stage using a stride of 2. Finally, a Global Average
Pooling Layer reduces the spatial dimensions, and a Fully
Connected Layer outputs the feature embedding.

IV. EVALUATION
A. Datasets

While there are numerous datasets for instrument classifi-
cation targeting audio signals, many of them focus on single
note instrument sounds. To the best of our knowledge, there is
no existing open datasets for instrument classification targeting
note sequences. There are datasets consisting of pairs of audio
signals from instrument performances and musical note se-
quences for automatic music transcription purposes. To acquire
paired data of musical note sequences and audio signals for
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evaluation purposes, the Synthesized Lakh (Slakh) Dataset
is utilized, which is a dataset for audio source separation
that is synthesized from the Lakh MIDI Dataset [15]. The
ground truth data for instrument classification consisted of the
following eight categories selected from the Slakh Dataset:
Guitar, Piano, Bass, Strings, Organ, Brass, Pipe, and Reed.

B. Pre-processing

We use the Lakh MIDI Dataset as our dataset for symbolic
music. Each MIDI file contains multiple instrument tracks,
which are paired with corresponding audio recordings to create
Audio-MIDI training pairs.

MIDI preprocessing follows the method described in prior
work [2]. First, non-melodic and percussion tracks are filtered
out to retain only pitched instrument tracks. Then, velocity
values are normalized to ensure consistency across MIDI files.
Finally, each MIDI sequence is converted into a fixed-length
piano-roll representation. We set the temporal resolution such
that each measure is divided into 24 time steps, allowing the
representation of common rhythmic patterns such as triplets
and 32nd notes. Each track is segmented into two-measure
units. Based on an analysis of pitch distributions, we limit the
pitch range to 84 distinct values, spanning from C1 to B7. As
a result, a 4/4 bar with a single track is represented as a 96 X
84 matrix, and each two-measure segment becomes a tensor
of size 16,128 = 84 (pitches) X 192 (time steps).

For audio processing, we extract mel-spectrograms from
paired audio recordings. The spectrogram representations are
aligned with MIDI sequences by dividing them into segments
corresponding to measure lengths, based on the BPM (Beats
Per Minute) of the piece. The window size and hop size for
the Fourier transform were set to 512, and the number of bins
in the mel-filterbank was 128. The resulting size of the target
output tensor was 36,096 = 128 (bins) X 282 (time steps).

C. Experimental Setup

We compare five settings to evaluate the effectiveness of
contrastive Audio-MIDI learning:

e AIC (Audio encoder): A classifier is trained on audio
signals to obtain embeddings, which are used as reference
representations in contrastive Audio-MIDI learning.

o SIC (Baseline): A supervised classifier is trained directly
on MIDI embeddings without contrastive Audio-MIDI
learning.

« CAMIL: MIDI embeddings are pre-trained using con-
trastive Audio-MIDI learning with class-based negative
sampling (see Eq. 3). The encoder is frozen, and a linear
classifier is trained on top.

¢ Fine-tuned CAMIL: Same as CAMIL, but the encoder
is fine-tuned during classifier training.

e Unsupervised CAMIL: MIDI embeddings are pre-
trained using contrastive Audio-MIDI learning with ran-
dom negative sampling (see Eq. 2). The encoder is then
frozen, and a linear classifier is trained.

TABLE I: Classification performance (F1 Score) under differ-
ent experimental conditions.

Condition Train data  Negative Sampling F1 Score
AIC (Audio encoder) 100% - 0.9613
SIC (Baseline) 100% - 0.6008
CAMIL 100% Class-based 0.6236
Fine-tuned CAMIL 100% Class-based 0.6270
Unsupervised CAMIL 100% Random 0.6086
SIC (Baseline) 50% - 0.5573
CAMIL 50% Class-based 0.5772
Unsupervised CAMIL 50% Random 0.5768

To evaluate data efficiency, we conduct experiments using
both 100% and 50% of the training data. In all settings, the
test set is used in full.

The model was trained using a batch size of 512 and
an initial learning rate of 0.001. The Adam optimizer was
employed for parameter optimization.

D. Results and Discussion

Tab. I summarizes the classification performance (F1 Score)
under different experimental conditions. The results highlight
the impact of contrastive learning and different negative
sampling strategies on classification accuracy. First, the AIC
(Audio encoder) model, serving as a reference performance,
achieves an F1 score of 0.9613. This could serve as an
upper bound for the performance of MIDI-based classification
models.

The SIC (Baseline) model, which does not incorporate
contrastive learning, exhibits lower performance with an F1
score of 0.6008 when trained on the full dataset. This suggests
that direct classification using MIDI embeddings without pre-
training struggles to capture discriminative features effectively.

Introducing CAMIL (Contrastive Audio-MIDI Learning)
improves the performance compared to the SIC baseline.
CAMIL with class-based negative sampling achieves an F1
score of 0.6236, and fine-tuning further enhances it to 0.6270.
The results indicate that pre-training MIDI embeddings using
contrastive learning effectively enhances feature representa-
tions, leading to improved classification accuracy.

When employing random negative sampling in an unsu-
pervised setting, CAMIL achieves an FI1 score of 0.6086.
This is lower than the class-based approach, suggesting that
selecting negatives from different instrument classes provides
more effective supervision compared to purely random nega-
tives. Notably, the unsupervised CAMIL model, which does
not rely on instrument labels for negative sampling, slightly
outperforming SIC. This suggests that contrastive learning can
provide benefits even without explicit instrument classification
labels, making it a promising approach for applications where
labeled data is limited.

Reducing the training dataset to 50% leads to performance
degradation across all models. The SIC baseline drops to
0.5573, highlighting the importance of sufficient training data.
However, CAMIL still outperforms the SIC baseline, with
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Fig. 2: Confusion matrix for the CAMIL, showing the classi-
fication results for the following instrument categories: Guitar
(0), Piano (1), Bass (2), Strings (3), Organ (4), Brass (5), Pipe
(6), and Reed (7).

the class-based negative sampling approach reaching 0.5772
and the random negative sampling method achieving 0.5768.
These results indicate that CAMIL provides more robust
representations that maintain relative performance advantages
even with limited training data.

To better understand the classification behavior of our
model, we present the confusion matrix of CAMIL in Fig. 2.
It illustrates classification accuracy across instrument classes
and highlights common misclassification patterns. CAMIL
achieves high accuracy for well-represented classes such as
“Piano” (class 1) and “Strings” (class 3). while relatively rare
classes like “Flute” (class 6) and “Oboe” (class 7) exhibit
higher misclassification rates. This suggests that CAMIL,
despite its overall effectiveness, may be sensitive to class im-
balance. These observations indicate that CAMIL learns robust
feature representations for frequent classes, and emphasize the
importance of class distribution in training effective classifiers.

V. CONCLUSION

In this study, we proposed Contrastive Audio-MIDI Learn-
ing (CAMIL) to improve symbolic-domain musical instrument
classification by bridging the gap between MIDI represen-
tations and their corresponding audio features. Our method
leverages contrastive learning by aligning MIDI embeddings
with audio representations from the same segment, while
pushing them away from unrelated samples, thereby enhancing
representation consistency.

Experiments on the Lakh MIDI Dataset demonstrated that
CAMIL improves classification performance, achieving an
F1 score of 0.6270, outperforming the baseline (0.6008).
Notably, even in an unsupervised setting, where instrument
labels are not used for negative sampling, CAMIL achieved
an F1 score of 0.6086, matching or slightly exceeding the
baseline, indicating its effectiveness without relying on explicit

class supervision. Furthermore, the model maintained robust
performance even when the training data was reduced to 50%,
suggesting that CAMIL is a data-efficient approach. These
results indicate that contrastive learning with audio guidance
enables the acquisition of meaningful MIDI representations,
even in low-resource or weakly supervised scenarios.

For future work, we plan to analyze the generalizability of
the learned representations and evaluate their transferability to
other music-related tasks. This study highlights the potential of
contrastive learning in symbolic music processing and opens
new directions for building more robust and expressive MIDI-
based models.
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