
Gradient Clipping Improves Neural Network Optimization
for Perceptual Sound Matching

Han Han
Nantes Université, École Centrale Nantes

CNRS, LS2N, UMR 6004
Nantes, France
han.han@ls2n.fr

Vincent Lostanlen
Nantes Université, École Centrale Nantes

CNRS, LS2N, UMR 6004
Nantes, France

vincent.lostanlen@ls2n.fr

Mathieu Lagrange
Nantes Université, École Centrale Nantes

CNRS, LS2N, UMR 6004
Nantes, France

mathieu.lagrange@ls2n.fr

Abstract—Perceptual Sound Matching (PSM) learns the optimal
synthesizer input to replicate a target sound perceptually. To achieve so,
it adopts learning objectives reflective of auditory perceptual distance
to derive perceptually informed gradients via automatic differentiation.
Yet, learning objectives of PSM are often ill-conditioned, since not all
synthesizer and perceptual representation are invertible. To address this
challenge, state of the art methods adopt multi-stage training to foster
convergence, rendering the training objective non-stationary. In this
paper, we show that autoregressive optimization methods like Adam is
unsuited to readily reflect the discrepancy in gradient conditions caused
by nonstationary objectives, as well as updating weights informed by large
gradients from ill-conditioned objectives. We demonstrate empirically how,
with a simple formulation of weight decay and gradient clipping, one can
optimize PSM with more probable convergence and better generalization.
We provide possible reasoning by comparing evolutions of summarized
gradient norm and gradient roughness under different optimization setups.

Index Terms—Perceptual Sound Matching, Optimizer, Stochastic
Gradient Descent

I. INTRODUCTION

Given a parametric synthesizer g, perceptual sound matching (PSM)
aims to find a vector θ̃ such that g(θ̃) matches some target sound
x. Early work on sound matching often employ genetic algorithms
and spectral matching to optimize for θ. For instance, Yeeking et
al developed a non-gradient-based system that iteratively updates
parameter combination to approximate the Mel-Frequency Cepstral
Coefficients (MFCC) of a given target sound [1]. For a neural network
fw with weights w, this task may be formulated as multidimensional
regression via training set synthesis over a finite set Θ. With θ
and x = g(θ) as dependent and independent variables, we define a
“generalized nonlinear least squares” [2] objective of the form:

Lθ(w) = ⟨(fw ○ g)(θ) − θ ∣M(θ) ∣ (fw ○ g)(θ) − θ⟩, (1)

where θ̃ = (fw○g)(θ) and the bracket notation ⟨u∣M∣u⟩ = u⊺Mu is
a quadratic form in u. The symmetric matrix M(θ) contains domain
knowledge about the perceptual significance of each linear direction
in parameter space in the vicinity of θ.

The earliest methods for PSM relied on the ad hoc assumption
M(θ) = I for every θ ∈ Θ, hence a nonlinear least squares
objective LP

θ (w) = ∥(fw ○ g)(θ) − θ∥22 which we will later denote
as parameter loss or P-loss for short [3]. A more recent method,
known as perceptual–neural–physical (PNP) [4], has shown the value
of incorporating off-diagonal coefficients in M(θ). PNP harnesses
automatic differentiation of g and of a perceptual similarity function
to compute an adapted matrix M(θ) for each θ ∈Θ. The rationale
behind PNP is that if w is such that Lθ(w) is small, then its
gradient ∇Lθ(w) approximates the gradient of perceptual loss in
differentiable digital signal processing (DDSP) [5] while remaining
almost as computationally efficient as the gradient of P-loss.

The main drawback of PNP is that it may yield a rank-deficient
matrix M(θ). This can be observed in practice by diagonalizing
M(θ) and computing its condition number, i.e., the ratio of its
largest to its smallest eigenvalue. A high condition number, also
known as ill-conditioning, causes numerical inaccuracies: depending
on the position of θ̃ with respect to θ, the vector (M(θ) ⋅ (θ̃ − θ))
may be near-zero. As a consequence of the chain rule, the PNP
gradient ∇Lθ(w) is also near-zero even though the perceptual loss
associated to the reconstructed sound g(θ̃) = (g ○ fw ○ g)(θ) may
be significantly greater than zero.

Against this drawback, [4] have proposed a modified objective:

Lθ,λ(w) = ⟨(fw ○ g)(θ) − θ ∣M(θ) + λI ∣ (fw ○ g)(θ) − θ⟩, (2)

where λ > 0 is a hyperparameter. Intuitively, the additive term λI
shifts all eigenvalues of the the matrix M(θ) by a constant positive
offset λ, thus lowering the condition number of (M(θ) + λI) in
comparison with M(θ). This approach resembles the Levenberg-
Marquardt algorithm (LMA) 1 except that we seek to minimize Lθ,λ

with respect to neural network weights w and not simply retrieve the
vector θ from a randomly initalized parameter vector θ̃.

Yet, the introduction of Levenberg-Marquardt damping in Equation
2 brings, in turn, new drawbacks. The value of λ is adjusted
dynamically depending on the spectra of M(θ) for all θ in the
training set and depending on the performance of the model fw on
the objectives Lθ . This is problematic for an optimizer such as Adam,
which remains the standard choice of deep learning until today.

We experiment with a PSM problem in which Adam fails to train
the model fw on the PNP objective, even after Levenberg-Marquardt
damping. We build upon previous work [6], that took inspiration from
recent literature on large language models (LLM) [7], and adopted
an alternative optimizer based on gradient clipping and weight decay
(GCWD) that was found indispensable to achieving convergence in
this problem setting. In this paper, we evaluate more systematically
Adam and GCWD’s optimization robustness across different model
sizes and random initializations. We find that:
● the improvement of GCWD is consistent across physical and

perceptual metrics and across model scales from 4M to 64M
parameters;

● GCWD is a better optimizer than Adam whenever the objective
varies greatly across iterations, as is the case with PNP due to
the parameter λ.

Those evidences are further supported by considering metrics
reflecting optimization conditions such as summarized gradient norm

1We refer to the NeurIPS 2017 Test-of-time award presentation by Ali Rahimi
for an introduction to Levenberg-Marquardt damping and the challenges of
training deep neural networks on ill-conditioned objectives.

436ISBN: 978-9-46-459362-4 EUSIPCO 2025

and roughness. We conclude with tentative explanations regarding the
improved rate of convergence and generalization ability of GCWD.

II. METHOD

A. Multi-scale spectrogram vs. joint time–frequency scattering

Denoting a multidimensional audio descriptor by Φ and the target
sound by x = g(θ), spectral loss is defined as ∥(Φ○g)(θ̃)−Φ(x)∥22.

The multi-scale spectrogram (MSS) is based on a combination of
short-term Fourier transforms (STFT) at various window lengths. If
the target sound x and g(θ̃) are sustained harmonic tones with the
same fundamental frequency (f0), MSS is appropriate as spectral loss
for DDSP [5]. However, MSS falls short whenever f0 is unknown
[8] or on nonstationary inharmonic sounds such as percussion [9].

Joint time–frequency scattering (JTFS) alternates discrete wavelet
transform and pointwise complex modulus to extract spectrotemporal
modulations at various scales and rates in the time–frequency
domain [10]. JTFS is a mathematical idealization of spectrotemporal
receptive fields in the primary auditory cortex [11]. After automatic
differentiation [12] thanks to the Kymatio software library [13], a
recent publication has shown the potential of replacing MSS by JTFS
in DDSP as soon as g produces nonstationary sounds [9].

However, the scalability of DDSP with JTFS is hampered by its
computational cost: the forward pass Φ through a 3-second sample
waveform takes around 3 seconds, while reverse-mode automatic
differentiation (∇Φ) takes around one minute.

B. Perceptual–neural–physical loss

Following [4], we perform a first-order Taylor expansion of the
operator (Φ ○ g) around the JTFS coefficients of the target sound
Φ(x):

(Φ ○ g)(θ̃) =Φ(x) + J(Φ○g)(θ) ⋅ (θ̃ − θ) +O(∥θ̃ − θ∥22),

where J(Φ○g) is the Jacobian of (Φ ○g). The associated Riemannian
metric yields a square matrix M(θ) = J(Φ○g)(θ)⊺J(Φ○g)(θ) which
we use to approximate spectral loss by a quadratic form:

∥(Φ ○ g)(θ̃) −Φ(x)∥2
2
= ⟨θ̃ − θ∣M(θ)∣θ̃ − θ⟩ +O(∥θ̃ − θ∥32)
= Lθ(w) +O(∥(fw ○ g)(θ) − θ∥

3
2), (3)

where θ̃ = (fw ○ g)(θ). Crucially, the matrices M(θ) are constant
in w for all θ. Thus, we may precompute them asynchronously in
parallel. Furthermore, each of them contains only J2 coefficients,
where J is the dimension of the vector θ. Typically, 2 ≤ J ≤ 100; in
our application, J = 5. Thus, the memory footprint of all matrices
M(θ) is small enough to allow storage on disk before training.

Denoting by w[i] the ith coordinate of the weight vector w of the
model fw, the partial derivative of Lθ with respect to w[i] is

∇Lθ(w)[i] = 2⟨fw(x) − θ∣M(θ)∣
∂fw
∂w[i] (x)⟩. (4)

The gradient vector of the neural network output with respect
to each weight (in orange) is projected onto the eigenvectors of
M(θ) and scaled by the corresponding eigenvalues. The final
gradient scalar informing each weight update is the dot product
between the scaled gradient (in red) and the error vector (in green).
Consequently, a nonzero gradient vector risks being excessively
stretched or decompressed, leading to extreme magnitudes that severely
distorts the original parameter error vector. Despite its extremity, this
perceptual scaling indeed remains accurate locally when parameter
error is sufficiently close to zero. However, this does not hold when
fw is randomly initialized at the start of optimization. Non-negligible

u1

u2

e1

e2 ∂fw(x)
∂w[i]

fw(x) − θ

M(θ) ⋅ ∂fw(x)
∂w[i]

Fig. 1. Vectors showing an extreme case where a nonzero gradient vector
yields zero gradient when combined with ill-conditioned kernel matrix M(θ).
Orange: gradient vector of neural network output with respect to a given
weight. Blue: two eigenvectors of M(θ) with e1 corresponding to a big
eigenvalue and e2 corresponding to a small eigenvalue. Red: gradient vector
after multiplied with M(θ). Green: parameter error vector. In this scenario,
the final gradient with respect to the weight is 0 as the red and the green
vectors are perpendicular to each other, despite that neither the parameter error
vector nor the gradient vector was zero.

parameter error combined with M(θ) can lead to incorrect scaling.
This is further supported by the fact that the higher-order error terms
in Equation 3 are only negligible if parameter error is small enough.

By inspiration from the Levenberg-Marquardt algorithm, we add
a corrective term λI to shift all eigenvalues of M(θ) by a constant,
thereby improving the condition number of the quadratic form:

LPNP
θ,λ (w) = ⟨θ̃ − θ∣M(θ) + λI∣θ̃ − θ⟩

= ⟨θ̃ − θ∣M(θ)∣θ̃ − θ⟩ + λ∥θ̃ − θ∥22. (5)

The formula above can be interpreted as a linear combination between
linearized perceptual loss and P-loss, with λ as multiplicative factor.

C. Adam optimizer

We generalize the PNP loss (Equation 5) to a minibatch of B
samples:

LΘ,λ(w) =
1

B
∑
θ∈Θ

⟨(fw ○ g)(θ) − θ∣M(θ) + λI ∣ (fw ○ g)(θ) − θ⟩.
(6)

Let us denote by Θt and λt the minibatch and damping value at each
iteration t ≥ 0 training the neural network fw. The Adam optimizer
[14] performs an exponential moving average (EMA) of the gradient
vector LΘt,λt(wt) and its coordinate-wise square:

mt[i] = β1mt−1[i] + (1 − β1)∇LΘt,λt(wt)[i], (7)

vt[i] = β2vt−1[i] + (1 − β2)∇LΘt,λt(wt)[i]2, (8)

where β1, β2 ∈ [0,1) are hyperparameters. Assuming that the gradients
∇LΘt,λt(wt), t ≥ 0 are i.i.d. samples from a random variable, mt

and vt estimate its first- and second-order moments. However, because
m0 and v0 are initialized at zero, these estimators are biased. Adam
debiases them multiplicatively: m̂t =mt/(1−βt

1), v̂t = vt/(1−βt
2).

Given a sequence of learning rates (αt)t and a small constant ε, the
Adam weight update rule is:

wt =wt−1 − αt
m̂t

ε +
√
v̂t

. (9)

Intuitively, the learning rate αt sets an upper bound on the step size
per coordinate, while the EMA in Adam assigns comparatively smaller
step sizes to weight coordinates i for which the gradient tends to have
higher variance and/or more frequent sign fluctuations.

D. Limitations of Adam for PNP

For any w and Θ, the PNP gradient ∇LΘ,λ(w) is an affine
function of λ. Therefore, the second-order moment estimate vt grows
in proportion to λ2. For large values of λ, v̂t is exposed to a risk

437

of overflow. This risk is amplified for coordinates i such that the
partial derivative of fw with respect to w[i] at x = g(θ) has a large
magnitude and is collinear with (fw(x) − θ) on average over θ ∈Θ.

At the initialization of neural network training (t = 0), we set λ0

equal to the maximum principal eigenvalue of M(θ) over all training
examples θ from the training set. In this way, the condition number
of (M(θ) + λI) is guaranteed to range between 1 and 2 for every θ.

On the PSM problem which we will present in the next section,
we observe a maximum principal eigenvalue of λ0 ∼ 1041, leading
to ∇LΘ0,λ0(w0)[i] ∼ 1027 and ultimately v0[i] ∼ 1054. Yet, single-
precision floating-point arithmetic, the one commonly used in GPU
computing, has an overflow level of the order of 1038. In practice, we
have observed that gradient squaring in Adam does cause overflow
for a non-negligible proportion of weights wt[i], thus canceling the
term αtm̂t in Equation 9.

At first glance, this issue could be easily circumvented by rescaling
gradients ∇LΘt,λt(wt) by c = 1/λ0 ∼ 10−41. However, this provokes
a second issue, namely, a risk of underflow in EMA. Underflow arises
for coordinates i such that ∇LΘt,λt(wt) is small; i.e., in proportion
with the smallest eigenvalue of w(θ). For these coordinates, v̂t ≪ ε
and thus Adam essentially falls back to a kind of stochastic gradient
with momentum β1 and learning rate (αtc/ε).

The above observations suggest that under the premise of leaving
the large gradients as they are, it is best to omit the inverse second
moment estimates and seek alternative ways to stabilize step size
magnitudes.

E. Gradient clipping as an alternative to Adam

Gradient clipping mitigates arbitrarily large gradients by threshold-
ing the update step size with hyperparameter ρ. In extreme cases with
large gradients ∇Lθ,λ(w), it becomes equivalent to SignGD, where
only the sign of gradients are utilized to update weights at a fixed
step size αtρ. Additionally, we adopt weight decay with damping
hyperparameter γ ∈ [0,1) as it has been used in conjunction with
gradient clipping in [7].

wt = (1 − αtγ)wt−1 − αt ⋅min (max(mt−1/ε, ρ),−ρ) (10)

Weight decay originates from Tikhonov (ℓ2) regularization in
ordinary least squares regression. By constraining weight magnitudes,
it has the potential to reduce overfitting [15].

F. Adaptive Levenberg-Marquardt damping

By inspiration from the Levenberg-Marquardt Algorithm (LMA),
we initialize the corrective term λt as the largest empirical eigenvalue
of M(θ), around λ0 ∼ 1041 in practice. Then, we reduce it by a
factor of r = 0.02 when epoch validation loss decreases. Denoting
the number of steps per epoch by T and the validation set by Θval,
we set λt = rλt−1 if the step t is divisible by T and if

LΘval,λt−1(wt−1) < LΘval,λt−T−1(wt−T−1), (11)

and λt = λt−1 otherwise.
This design of λ evolution allows for easier convergence at the

beginning and automatically increases proximity to the ill-conditioned
perceptual loss in a self-regulating manner. Yet, this poses problem
in EMA. As λ is damped by an accelerator driven by model weights
in the previous step, gradient magnitudes undergo the same reduction.
Commonly adopted EMA hyperparameters β1, β2 favor historical
gradients and would not reflect the drastic drop in magnitude until
many steps later.

III. EXPERIMENTAL VALIDATION

A. Experiments

We conduct PSM experiments to compare the optimization behav-
iors of Adam and GCWD. All optimizers are used in conjunction
with adaptive learning rate decay monitored by the validation loss.
EfficientNets [16] are series of neural net architectures designed
to balance scalings of the depth, width and input resolution of the
consecutive convolutional blocks. It has achieved state of the art
performances on image and audio classification tasks. Prior work
on PSM has only been evaluated on EfficientNet-b0, the most light-
weight version. We take it further in this work to perform PSM on
three increasingly large EfficientNet’s: b0, b4 and b7, corresponding
to 4, 17 and 63.8 million weights. All models are trained five times
against PNP loss in Equation 5.

As in [6], we adopt functional transformation method (FTM)
drum physical model as synthesizer and L2 JTFS distance [12] as
perceptual distance measure. The dataset comprises 100k synthetic
drum sounds from a rectangular drum physical model solved via the
functional transformation method. The five synthesis parameters are
pitch, duration, roundness, inharmonicity and squareness. They are
uniformly sampled from their respective ranges. We refer to [4] for
more details.

We train each model with one of the two optimizers for 70 epochs
with a batch size of 256 samples. We compare the convergence trend
and generalization ability through the training curves and test losses.

B. Evaluation Metrics

We adopt mean squared error of the predicted parameter, and
multiscale spectrogram loss (MSS) [5] as evaluation metrics. The
former reflects closeness in parameter space whereas the latter
calculates a summarized spectral difference localized in differing
time-frequency resolution.

Additionally, we monitor gradient norm and gradient roughness
during training. Gradient norm ∥∇LΘt,λt(wt)∥2 measures the mean
squared error of gradients with respect to all weights in a given batch
of B samples.

A huge gradient norm indicates extreme sensitivity of the loss
objective to small changes in model weights. This could result from
either a loss function of large magnitude, an ill-conditioned loss
function, or else large weights.

We choose gradient roughness (originally termed smoothness)
proposed in [17] to measure fluctuations of the optimization landscape.
A slow-varying, smooth loss landscape implies small changes in
gradient vectors even when one step of gradient descent results in
largely disparate weights. Conversely, a spiky landscape with lots of
local minimas likely has conflicting gradients even when the weights
have barely changed after one update. Following the implementation
in [17], we express gradient roughness st as

st = 2
∥∇LΘt,λt (12wt + 1

2
wt+1) −∇LΘt,λt (wt)∥2

∥wt+1 −wt∥2
. (12)

A small st implies smooth optimization condition and vice versa.

C. Discussion

As PNP loss is a nonstationary objective with decreasing magnitude
whenever epoch validation loss breaks the lowest record, drastic drops
in training loss are present at the start of certain epochs. As shown
in Fig. 2, models trained with GCWD (in blue) exceed their Adam
counterparts (in red) by a large margin across all model sizes.

All models under Adam optimization quickly plateau and do not
meet adaptive PNP loss damping criteria for the remaining training

438

0 50

1013

1016

1019

1022

1025

1028

1031

1034

T
ra

in
in

g
P

N
P

L
o
ss

EfficientNet b0

0 50

Number of Epochs

EfficientNet b4

0 50

EfficientNet b7

Adam

GCWD

Fig. 2. Training curves of PNP loss using Adam versus GCWD. Each model
is run for 5 trials. The shaded areas cover the training loss across trials whereas
the solid line outlines the mean.

epochs. This is largely caused by the near-zero step sizes from scaling
with inverse second moment gradient estimates. On the contrary,
GCWD stably decays the λ throughout the seventy epochs with
stochastically clipped nonzero step sizes. Reflected also through test

Model P-loss ↓ MSS ↓
b0 0.36 ± 0.0010 2.2 ± 0.008

Adam b4 0.36 ± 0.0020 2.0 ± 0.020
b7 0.36 ± 0.0008 2.1 ± 0.008
b0 0.021 ± 0.005 0.86 ± 0.10

GCWD b4 0.020 ± 0.002 0.88 ± 0.03
b7 0.022 ± 0.006 0.88 ± 0.10

TABLE I
MEAN AND STANDARD DEVIATION OF P-LOSS AND MSS METRICS

EVALUATED AT THE FINAL EPOCH OF EACH MODEL.

losses in Table I, only the models trained with GCWD are able
to converge and generalize to unseen test sounds. We observe that
model sizes do not have much impact on the convergence with neither
optimizer. This evidence firmly rules out the possibility of Adam
overfitting smaller models and confirms that Adam fails to efficiently
update the weights.

To examine the optimization condition with each optimizer, we train
100 steps an EfficientNet-b0 network with PNP loss to investigate how
objective change impacts gradient norm and roughness. Simulating
training with a damped PNP loss, we initialize λ = 1041 and manually
reduce the objective by a factor of 5 at iteration 50. The gradient
norm and roughness are evaluated based on sum of 10% of the total
number of weights, which according to [17] closely approximates the
entire weight distribution. We expect a drastic drop in gradient norm
during the objective change, due to the positive correlation between
gradient norm and loss magnitude.

As observed in Fig. 3, both optimizers has overall decreasing
gradient norm and an extra dip at epoch 50. However at the point of
objective transition, the roughness condition has worsened for Adam
model and improved for GCWD. This suggests that in the consecutive
updates after objective change, gradient fluctuations becomes more
apparent for Adam optimizer than for GCWD. This could be explained
by two postulations. First, the unregulated inverse second moment
estimates in Adam step size calculation reduces the weight update to
a small number, resulting in a large roughness coefficient. Second, the
unregulated EMA mechanism delays reflecting the most up to date

0 20 40 60 80 100

1020

1021

1022

1023

1024

G
ra

d
ie

n
t

ro
u

g
h

n
es

s

0 20 40 60 80 100

Iterations

1019

1020

1021

1022

G
ra

d
ie

n
t

n
o
rm

Adam

GradClip+WeightDecay

Fig. 3. Evolution of gradient norm and gradient smoothness of PNP loss.
Gradient roughness evaluates consistency of gradients with respect to weights
from adjacent updates. The smaller the better the optimization condition.
During objective change, GCWD results in smoother optimization condition
whereas Adam encounters less smooth gradient fluctuations. See Section III-C
for more details.

gradient conditions, thereby yielding bigger step sizes that noisify the
optimization condition.

IV. CONCLUSION

In this work, we presented the properties of PNP loss for perceptual
sound matching, and highlighted how its loss formulation is exposed
to numerical instability and nonstationarity. We demonstrated Adam’s
limitations in addressing such issues due to second moment estimates
exceeding numerical precision bounds and EMA estimates failing to
adapt to rapid changes in gradient conditions. To overcome these
challenges, we proposed GCWD, which combines stochastically
clipped step sizes and weight decay to stabilize training and achieve
convergence that is otherwise impossible with Adam. Results reported
in this paper considered a single task, namely sound matching and a
single synthesizer, but ill-conditioned objective is pervasive across a
wide range of learning tasks. We believe the insights presented in this
work can be advantageous in tackling other challenging optimization
conditions where nonsmoothness and numerical issues are faced.
Future work shall verify GCWD’s effectiveness in optimizing ill-
conditioned objectives in other applications. Additionally, conducting
experiments with isolated techniques, such as using only gradient
clipping/weight decay, or removing Adam’s second moment estimate,
could provide deeper insights into the dynamics and comparative
performance of these optimizers.

REFERENCES

[1] Matthew John Yee-King and Martin S. Roth, “Synthbot: an unsupervised
software synthesizer programmer,” in International Conference on
Mathematics and Computing, 2009.

[2] Albert Tarantola and Bernard Valette, “Generalized nonlinear inverse
problems solved using the least squares criterion,” Reviews of Geophysics,
vol. 20, no. 2, pp. 219–232, 1982.

439

[3] Han Han and Vincent Lostanlen, “wav2shape: Hearing the Shape of a
Drum Machine,” in Proceedings of Forum Acusticum, 2020.

[4] Han Han, Vincent Lostanlen, and Mathieu Lagrange, “Perceptual–Neural–
Physical Sound Matching,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), June
2023.

[5] Jesse Engel, Lamtharn (Hanoi) Hantrakul, Chenjie Gu, and Adam Roberts,
“DDSP: Differentiable Digital Signal Processing,” in Proceedings of the
International Conference on Learning Representations (ICLR), 2020.

[6] Han Han, Vincent Lostanlen, and Mathieu Lagrange, “Learning to
Solve Inverse Problems for Perceptual Sound Matching,” IEEE/ACM
Transactions on Audio, Speech and Language Processing, vol. 32, pp.
2605–2615, Apr. 2024.

[7] Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma, “Sophia:
A scalable stochastic second-order optimizer for language model pre-
training,” in Proceedings of the International Conference on Learning
Representations (ICLR), 2024.

[8] Joseph Turian and Max Henry, “I’m sorry for your loss: Spectrally-based
audio distances are bad at pitch,” Proceedings of the “I Can’t Believe
It’s Not Better” Workshop (ICBINB), 2020.

[9] Cyrus Vahidi, Han Han, Changhong Wang, Mathieu Lagrange, György
Fazekas, and Vincent Lostanlen, “Mesostructures: Beyond spectro-
gram loss in differentiable time-frequency analysis,” arXiv preprint
arXiv:2301.10183, 2023.

[10] Joakim Andén, Vincent Lostanlen, and Stéphane Mallat, “Joint time–
frequency scattering,” IEEE Transactions on Signal Processing, vol. PP,
May 2019.

[11] Etienne Thoret, Baptiste Caramiaux, Philippe Depalle, and Stephen
Mcadams, “Learning metrics on spectrotemporal modulations reveals
the perception of musical instrument timbre,” Nature Human Behaviour,
vol. 5, Mar 2021.

[12] John Muradeli, Cyrus Vahidi, Changhong Wang, Han Han, Vincent
Lostanlen, Mathieu Lagrange, and George Fazekas, “Differentiable time-
frequency scattering in kymatio,” in Proceedings of the International
Conference on Digital Audio Effects (DAFx), 2022.

[13] Mathieu Andreux, Tomás Angles, Georgios Exarchakis, Roberto Leonar-
duzzi, Gaspar Rochette, Louis Thiry, John Zarka, Stéphane Mallat, Joakim
Andén, Eugene Belilovsky, Joan Bruna, Vincent Lostanlen, Muawiz
Chaudhary, Matthew J. Hirn, Edouard Oyallon, Sixin Zhang, Carmine
Cella, and Michael Eickenberg, “Kymatio: Scattering transforms in
Python.,” Journal of Machine Learning Research, vol. 21, no. 60, pp.
1–6, Jan 2020.

[14] Diederik P. Kingma and Jimmy Ba, “Adam: A method for stochastic
optimization,” in Proceedings of the International Conference on Learning
Representations (ICLR), Yoshua Bengio and Yann LeCun, Eds., 2015.

[15] Anders Krogh and John Hertz, “A simple weight decay can improve
generalization,” in Advances in Neural Information Processing Systems,
J. Moody, S. Hanson, and R.P. Lippmann, Eds. 1991, vol. 4, Morgan-
Kaufmann.

[16] Mingxing Tan and Quoc Le, “EfficientNet: Rethinking model scaling
for convolutional neural networks,” in Proceedings of the International
conference on Machine Learning (ICML), 2019.

[17] Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie, “Why
gradient clipping accelerates training: A theoretical justification for
adaptivity,” 2020.

440

