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Abstract—Explicit latent variable models provide a flexible
yet powerful framework for data synthesis, enabling controlled
manipulation of generative factors. With latent variables drawn
from a tractable probability density function that can be further
constrained, these models enable continuous and semantically
rich exploration of the output space by navigating their latent
spaces. Structured latent representations are typically obtained
through the joint minimization of regularization loss functions.
In variational information bottleneck models, reconstruction
loss and Kullback-Leibler Divergence (KLD) are often linearly
combined with an auxiliary Attribute-Regularization (AR) loss.
However, balancing KLD and AR turns out to be a very delicate
matter. When KLD dominates over AR, generative models tend to
lack controllability; when AR dominates over KLD, the stochastic
encoder is encouraged to violate the standard normal prior. We
explore this trade-off in the context of symbolic music generation
with explicit control over continuous musical attributes. We show
that existing approaches struggle to jointly minimize both regu-
larization objectives, whereas suitable attribute transformations
can help achieve both controllability and regularization of the
target latent dimensions.

Index Terms—symbolic music generation, attribute-controlled
generation, latent space regularization, power transforms

I. INTRODUCTION

Symbolic music generation has witnessed remarkable ad-
vancements in recent years with the rise of deep latent variable
models [1]–[5], yet the challenge of controlling high-level mu-
sical attributes at inference time remains an active area of re-
search. Latent variable models can be broadly categorized into
explicit density models [6], such as Variational Autoencoders
(VAEs), Variational Information Bottleneck (VIB) models,
normalizing flows, and diffusion models, and implicit density
models, notably Generative Adversarial Networks (GANs).

Explicit density models offer the advantage of tractable
likelihood estimation and a well-structured latent space. In
particular, deep variational Bayesian methods [7] learn smooth
and continuous representations of musical data [1], [2], leading
to meaningful interpolation and targeted manipulation of spe-
cific characteristics of the output [8]. Moreover, VAEs [9] and
VIB models [10] are able to learn disentangled representations,
i.e., having independent and interpretable latent factors, which,
in turn, allow individual musical attributes to be adjusted with-

out unintentionally altering others. This is often accomplished
through supervised multi-task learning techniques [11]–[15],
which structure the latent space by ensuring that specific
attributes are encoded so as to be proportional to changes along
designated dimensions. These approaches entail introducing
auxiliary attribute-regularization objectives alongside the re-
construction loss, ensuring data fidelity, and Kullback-Leibler
Divergence (KLD), which constrains the latent space to be
continuous and evenly dense, in addition to enabling efficient
and reliable sampling from a predefined prior distribution.

To the best of our knowledge, however, the trade-off be-
tween these regularization losses has not been thoroughly
explored in the literature, with training recipes being often
provided without an accompanying analysis of the ensuing
behavior of the regularized dimensions. In this work, by
focusing on high-level musical attributes such as Contour,
Pitch Range, and Rhythm Complexity, we show that existing
attribute-controlled symbolic music generation models are
highly sensitive to hyperparameter tuning and tend to fail
in satisfying both objectives at the same time. Furthermore,
we show that invertible attribute mappings based on power
transforms may help mitigate the issue.

II. RELATED WORK

Let X , Y , Z be random variables. The Information Bot-
tleneck (IB) [16] optimization problem is given by [10]
maxθ Iθ(Z, Y )−βIθ(Z,X), where I(·, ·) denotes the mutual
information. The IB framework entails finding pθ(z|x) param-
eterized by θ that defines a compressed representation of X ,
i.e., the latent variable Z, which retains as much information as
possible about Y while discarding irrelevant information about
X . This trade-off is controlled by the Lagrange multiplier
β ≥ 0.

The VIB approach [10] finds a variational lower bound on
the IB objective, resulting in the minimization of the following
loss function:

LVIB = −Epθ(z|x) [log qϕ(y|z)]+βDKL [pθ(z|x) ∥ r(z)] , (1)

where pθ(z|x) is a stochastic encoder, x is the encoder input,
qϕ(y|z) is a variational approximation of p(y|z) parameterized
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by the weights ϕ of a decoder network, y is the decoder
output, r(z) is the variational approximation of the marginal
distribution p(z), and DKL[·∥·] denotes the KLD. If Y = X ,
(1) coincides with the classic β-VAE objective [9]. In most
practical cases, pθ(z|x) and r(z) are chosen to be multivariate
normal distributions, namely, pθ(z|x) ∼ N (µz|x,Σz|x) and
r(z) ∼ N (0, I).

With little loss of generality, we will focus here on the one-
dimensional continuous case where an attribute is defined as
a scalar a ∈ A that can be algorithmically computed from an
instance x, i.e., there exists f : x 7→ f(x) such that f(x) = a,
with A ⊆ R the image of f .

To develop attribute-controlled generative models, [11],
[12] propose to encode a onto the i-th dimension of the latent
space by adding a supervised Attribute Regularization (AR)
term to (1), i.e.,

LAR-VIB = LVIB + γLAR, (2)

where γ ≥ 0 is a tunable hyperparameter.
In [12], Mezza et al. define such a regularization term as

LAR = MAE(zi, ã), (3)

where MAE denotes the mean absolute error, and ã is the z-
score of the attribute a. This simple pointwise error approach
proves effective as long as a is normally distributed [12]. If
not, the regularization losses in (2) turn out to have contrasting
objectives. If LAR dominates over the KLD, the learned
posterior pθ(zi|x) tends to naı̈vely approximate the attribute’s
sample distribution p(a) and disregard the target prior r(zi),
with the covariance Σz|x collapsing toward a zero matrix.
Conversely, if the KLD dominates over LAR, then pθ(zi|x)
follows r(zi) at the cost of poor attribute regularization.

In [11], Pati and Lerch propose a novel term that relaxes the
regularization constraint by enforcing a monotonic relationship
between a and zi, i.e.,

LAR = MAE(tanh(δDz), sign(Da)) , (4)

where Dz and Da are the pairwise distance matrices between
zi and a of all samples in a given mini-batch, respectively,
and δ > 0 is a hyperparameter controlling the spread of the
posterior distribution. Since enforcing an arbitrary monotonic
relationship may still result in a distribution diverging from
the chosen prior, though, using (4) requires careful balancing
of β and γ in (2) in order to learn θ such that pθ(zi|x)
approximates r(zi). In fact, the posterior is encouraged to be
Gaussian only as long as the KLD is minimized, which, in
turn, may negatively affect attribute control.

III. POWER TRANSFORM-BASED REGULARIZATION

In the previous section, we outlined practical problems aris-
ing from the minimization of (2) when having two conflicting
terms in LAR and DKL [pθ(z|x) ∥ r(z)]. In fact, when the prior
and the attribute distribution are too dissimilar, we will later
show that pθ(zi|x) fails to jointly model p(a) and r(zi). How-
ever, we argue that, the opposite being true, a simple distance
measure may prove sufficient as a regularizer. We can achieve

this by means of a parametric isomorphism Tλ : A → R such
that p(Tλ(a)) is (at least approximately) distributed like r(zi).
Hence, we define the following regularization loss:

LAR = MAE(zi, Tλ(a)). (5)

By requiring Tλ to be invertible, we can seamlessly go
back and forth between the latent space and the input space;
this enables attribute manipulation within the original, human-
interpretable domain, while ensuring the consistency of the
component-wise marginals of the posterior.

In case r(zi) ∼ N (0, 1), Tλ has to transform data so as to
make them more normal-like. We refer to this process as data
Gaussianization. Gaussianization can be implemented using
both parametric [17], [18] and non-parametric methods [19],
[20]. In the one-dimensional case, a simple approach is to use a
family of functions that define monotonic data transformations,
known in statistics as Power Transforms (PT).

First introduced in [17], one of the most widely used PT
is the Box-Cox transformation, whose two-parameter formu-
lation is

gλ1,λ2
(u) =

{
(u+λ2)

λ1−1
λ1

if λ1 ̸= 0,

ln(u+ λ2) if λ1 = 0,
(6)

where the shift parameter λ2 ≥ 0 extends the domain of g
from {u ∈ R |u > 0} to {u ∈ R |u > −λ2}.1

The proposed transformation of the attribute distribution
applies (6) followed by a Batch Normalization layer with scale
and shift parameters set to one and zero, respectively, i.e.,

BN1,0(u) =
u− µ√
σ2 + ϵ

, (7)

where ϵ is a small constant, and µ and σ correspond to the
mean and standard deviation of the current mini-batch during
training, and their moving average estimates across all batches
at inference time. Thus, the whole transformation is given by
the composition

Tλ(a) = (BN1,0 ◦ gλ1,λ2) (a). (8)

The transformation parameters λ = {λ1, λ2} are determined
using training data prior to the training phase, rather than
being learned alongside the VIB parameters. Specifically,
the shift parameter λ2 is found through a grid search, and
for each value in the grid, the power parameter λ1 is esti-
mated by minimizing the negative log-likelihood using Brent’s
method [21]. The optimal pair (λ1, λ2) is selected by picking
the parameters for which the transformed distribution has the
lowest negentropy, which can be approximated by J(ṽ) ≈
(E [ψ(ṽ)]− E [ψ(ν)])

2 [22], where ṽ is a standardized instance
of a random variable V , ν ∼ N (0, 1), and ψ is a nonquadratic
function that we chose to be ψ(u) = − exp(−u2/ 2) [22].
Once computed, {λ1, λ2} is kept fixed during both training
and inference, so applying (8) incurs no additional cost.

1In this study, we only consider attributes that, by construction, are bounded
from below. If not, the Box-Cox transformation could be replaced, e.g., by
the Yeo-Johnson transformation [18], which is defined on all of R.
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Looking back at (8), we may notice that Tλ is the com-
position of differentiable, monotone, and invertible functions.
As such, we may interpret T−1

λ as a special case of one-
dimensional normalizing flows where a nonnormal distribution
p(a) is obtained by letting the simple distribution r(zi) flow
through the diffeomorphism. While we do not explicitly re-
quire Tλ(a) to be differentiable, using diffeomorphic attribute
transformations would ultimately allow to learn λ via stochas-
tic gradient descent. We leave this study for future work.

IV. EVALUATION

A. Dataset

We train attribute-controlled models to learn pitch sequence
representations of four-bar monophonic melodies. We create
a large-scale dataset of monophonic melodies using 176,581
MIDI files from the Lakh MIDI Dataset [23]. First, we
check whether the original piece contains changes in its time
signature. If so, we split the file where these variations occur
and keep only the parts with a 4/4 time signature. Next,
we quantize MIDI events to the nearest sixteenth note. We
then define a melody as a sequence of notes within the
pitch range of a canonical 88-key piano and performed by an
instrument associated to a valid MIDI program. Considering
a melody ended if one bar of silence is found, we extract
only melodies that are at least four bars long and contain
at least three different pitches. If more than one note is
played simultaneously, we follow [1] and obtain a monophonic
sequence by keeping only the note with the highest pitch.
Finally, we extract four-bar melodies with a stride of one
bar. For each melody thus obtained, we compute 13 musical
attributes, including those discussed in Section IV-B. Melodies
are encoded as sequences of 64 integers in the range [0, 129],
with each step corresponding to the MIDI note number if
an onset is present or one of two additional tokens for note
off (128) and note hold (129) events. The corpus is then
split into training, validation, and test sets, with the training
data augmented through transposition by a random number of
semitones in the range of ±1 octaves. The resulting dataset
contains about 10 million unique melodies.2

B. Musical Attributes

In this work, we focus on three of the 13 musical attributes
included in our dataset: (i) Contour, which captures the extent
of melodic movement by averaging the pitch differences be-
tween consecutive notes; (ii) Rhythm Complexity, evaluated
using Toussaint’s metrical complexity measure [24]; (iii) Pitch
Range, determined by the difference between the highest and
lowest MIDI pitch values in the sequence.

C. Evaluation Metrics

We evaluate each attribute-controlled model on two aspects:
the degree of regularization of the latent dimension zi onto
which the attribute a is encoded and the ability of controlling
the output attributes at inference time.

2M. Pettenò, Aug. 2024, “4 Bars Monophonic Melodies Dataset (Pitch
Sequence),” Zenodo, doi: https://doi.org/10.5281/zenodo.13369389

On the one hand, a well-regularized latent dimension means
that the univariate posterior pθ(zi|x) is as close to r(zi)
as possible. In practice, we apply kernel density estimation
with normal kernels to the empirical posterior, and compare
the resulting PDF to the target prior N (0, 1). We measure
the (dis)similarity between these two probability distributions
with three metrics: (i) Maximum Mean Discrepancy (MMD)
with a polynomial kernel [4]; (ii) Overlapping Area (OA) as
previously done in [25], [26] to compare musical attribute dis-
tributions; and the (iii) Jensen–Shannon Divergence (JSD),
a symmetrized and bounded KLD-based similarity measure.

On the other hand, controllability is assessed through the
Spearman’s rank correlation coefficient (ρs) between the
regularized dimension zi and the attributes a⋆ of all 22,000
decoded test sequences. A coefficient ρs close to one indicates
that there exists a monotonic relationship between zi and a⋆,
which, in turn, means that we can generate samples with a
desired attribute by navigating the latent space along the i-th
dimension.

D. Implementation Details

We implement the VIB models so as to reconstruct the input
melodies. The encoder and decoder architectures follow the
design proposed in [1]. All models are trained for 40,000
iterations with a batch size of 512. The objective in (2),
with cross-entropy as the reconstruction loss, is minimized
using Adam. The learning rate is decreased exponentially from
10−3 to 10−5 with a rate of 0.9999. The hyperparameter β
is annealed exponentially from 0 to 10−3, which encourages
the model to focus on reconstructing the sequence with high
accuracy in the first part of the training [1]. Additionally, we
apply teacher forcing within the bottom-level decoder with a
probability following a logistic schedule [1]. λ1 and λ2 are
determined for each attribute as described in Section III.

To study the effect of different design choices in balancing
β and γ, respectively KLD and LAR, we train all models with
γ = 10−3, i.e., equal to the maximum value of β, and γ = 1,
as in [11]. These values are kept fixed throughout the training,
as our experiments showed that annealing γ in the same way
as β yields equivalent results.

V. RESULTS

In this section, we compare three regularization approaches:
the method discussed in Section III, denoted here as “PT”, and
those from [12] and [11]. Specifically, with “NM” we refer to
the method in [12], given by (3), and with “P&L” we refer to
the method in [11], given by (4) with δ = 10 [11].

Overall, we train 18 models, considering three regularization
losses (NM, P&L, PT), three musical attributes (Contour,
Rhythm Complexity, Pitch Range), and two different values
for the weight γ (1 and 10−3). Table I reports the evaluation
metrics discussed in Section IV-C for all such models.

When γ = 10−3, i.e., when the weighting of the AR
loss is comparable to that of the KLD, OA approaches the
theoretical maximum of 1, while JSD and MMD are low.
This indicates that the minimization of the KLD successfully
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(a) NM (b) P&L (c) PT

(d) NM (e) P&L (f) PT

Fig. 1. Contour attribute regularization with β → 10−3 and γ = 10−3

(a) NM (b) P&L (c) PT

(d) NM (e) P&L (f) PT

Fig. 2. Contour attribute regularization with β → 10−3 and γ = 1

regularized all latent dimensions, including zi. Conversely, ρs
is low, consistently between 0.4 and 0.66, i.e., far from the
maximum possible value of 1; this suggests some degree of
attribute regularization, yet not enough to ensure fine-grained
control over the output attributes in practical applications.

These phenomena are illustrated for Contour3 in Fig. 1.
For all 22,000 sequences in the held-out test set, Figs. 1a,
1b, 1c depict zi against another latent dimension zℓ that we
choose to be the least correlated with zi, with brighter colors
corresponding to higher a⋆ values and vice versa. The circular-
like distributions of points centered at the origin indicate
that, at least approximately, zi and zℓ are jointly Gaussian,
as prescribed by the KLD with a normal prior. The lack of
a smooth color gradient along zi, however, indicates poor

3Here, we focus on the Contour attribute. Additional results, along with
audio examples, are available at https://mpetteno.github.io/box-cox-latent-reg

AR, corroborating the values of ρs ranging from 0.40 to just
below 0.54 in Table I. Figs. 1d, 1e, 1f show the comparison
between pθ(zi|x) (in blue) and r(zi) (in orange), as well as
the overlap between the two distributions (in green). These
plots provide visual evidence of the similarity measured by
OA, JSD, and MMD. Fig. 1e also reveals that, with γ = 10−3,
P&L exhibits a better synergy with the KLD compared to NM
and PT, possibly because (4) enforces a monotonic rather than
pointwise error constraint.

When γ = 1, instead, AR appears to govern the training dy-
namics. As such, ρs turns out consistently over 0.99, indicating
an almost perfect monotonic relationship. On the downside,
the regularization metrics for NM and P&L significantly
worsen. This can be observed for Contour in Figs. 2a and
2b, where despite a distinct gradient from dark to bright
colors, the univariate latent distributions appear to be far from
jointly Gaussian. Likewise, Fig. 2d shows that NM encodes
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TABLE I
SPEARMAN’S RANK CORRELATION COEFFICIENTS AND REGULARIZATION METRICS. (↑) THE HIGHER THE BETTER; (↓) THE LOWER THE BETTER.

γ
Contour Rhythm Complexity Pitch Range

ρs (↑) OA (↑) JSD (↓) MMD (↓) ρs (↑) OA (↑) JSD (↓) MMD (↓) ρs (↑) OA (↑) JSD (↓) MMD (↓)
NM

10−3
0.4048 0.8803 0.012652 0.3989 0.4547 0.9055 0.007747 0.2752 0.4494 0.8797 0.012855 0.423175

P&L 0.5345 0.9888 0.000366 0.0217 0.6408 0.9537 0.002618 0.1131 0.6646 0.8591 0.017486 0.973104
PT 0.5394 0.9247 0.005627 0.2273 0.4982 0.9133 0.007481 0.3038 0.4028 0.8962 0.009497 0.350608
NM

1.0
0.9994 0.4382 0.237599 256.854 0.9981 0.7946 0.035963 1.9022 0.9982 0.7829 0.040768 1.2870

P&L 0.9999 0.6041 0.121547 6.4854 0.9981 0.6699 0.088264 30.3475 0.9982 0.7871 0.044671 14.4203
PT 0.9998 0.9224 0.004662 0.0085 0.9981 0.8793 0.013633 0.0523 0.9982 0.9474 0.002732 0.0249

an exponential distribution onto zi, thus drastically reducing
the OA, while Fig. 2e reveals that P&L leads to monotonic
yet sub-Gaussian attribute encoding.

This means that, when using these regularization losses, it
is not sufficient to sample the prior r(z) at inference time, but
one should either have prior knowledge of the true attribute
distribution or empirically estimate the latent marginal from
representative encodings of real-world data before being able
to apply meaningful manipulation. In contrast, when it comes
to the PT regularization method, OA, JSD, and MMD are
comparable if not better with γ = 1 than with γ = 10−3, all
while maintaining a Spearman’s rank correlation coefficient
over 0.99. Therefore, PT-regularized models appear to offer
greater flexibility when it comes to hyperparameter tuning,
allowing one to prioritize controllability without penalizing
regularization, and thus enabling inference by sampling the
prior and navigating the latent space as in a regular VIB.

VI. CONCLUSIONS

In this work, we explored the challenges of jointly mini-
mizing regularization loss functions in variational information
bottleneck models for symbolic music generation. We exam-
ined the trade-off between the Kullback-Leibler divergence
and existing attribute-regularization losses, highlighting how
an imbalance between these objectives can compromise either
controllability or adherence to the prior along the target
dimensions. Our findings indicate that existing approaches
struggle to balance these constraints, resulting in either poor
control over musical attributes or deviations from the desired
latent structure. However, experimental results demonstrate
that invertible mappings between attributes and latents based
on the Box-Cox power transform can alleviate this issue,
enabling both improved controllability and robust latent reg-
ularization with minimal hyperparameter tuning. Future work
includes learning transformation parameters via backpropaga-
tion, extending the method to handle multiple attributes, and
validating the framework across different signal domains.
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