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Abstract—Disentangled speech representation allows for pre-
cise control over individual speech attributes, such as content,
speaker identity, and style, enabling more flexible and natural
voice synthesis engines. This study advances speech synthesis
by developing innovative disentangled speech representation
algorithms. Techniques grounded in Information Theory such
as recently-proposed regularized variational mutual informa-
tion estimators supplemented with gradient reversal layer were
integrated to refine the representation of independent speech
attributes. Using the Expresso dataset within the FastSpeech 2
framework, this work demonstrates significant improvements in
the controllability and quality of synthetic speech. Objective met-
rics including cosine similarity matrices, perceptual evaluation
of speech quality (PESQ), and short-term objective intelligence
(STOI), complemented by subjective assessment of speech quality,
were evaluated. The results show that the proposed methods
outperform existing approaches, evidenced by superior A/B
testing outcomes, improved inter-cluster distance metrics, and
enhanced PESQ and STOI scores, highlighting the advancements
of the developed systems in intelligibility, naturalness, and overall
speech quality.

Index Terms—Disentangled Speech Representation,
Learning, Speech Synthesis, Information Theory

Deep

I. INTRODUCTION

Speech synthesis technologies have become integral to
various applications, from enabling real-time communication
between users and virtual assistants to providing voiceover
for multimedia content. The effective representation of speech
signals is central to the advancement of these technologies.
Traditional speech synthesis systems, such as concatenative
[1], [2] and formant synthesis [3], provided foundational tech-
niques for controlling speech attributes, but lacked flexibility
and scalability. With the advent of deep learning, models like
Tacotron [4] and WaveNet [5] introduced end-to-end archi-
tectures that significantly improved the quality of synthesized
speech as well as towards few-shot or even zero-shot speech
generation.

The disentanglement of speech attributes, separating con-
tent, speaker identity and style, is critical too enhancing the
clarity, naturalness, and personalization of synthesized speech.
Recent studies have used various architectures and frameworks
to enhance disentanglement capabilities. Variational autoen-
coders [6], [7] and Generative Adversarial Networks [8], [9]
have been particularly effective in learning more interpretable
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and isolated representations of speech features. Despite these
advancements, current speech synthesis systems frequently
face challenges in effectively separating key speech attributes,
leading to synthesized speech that lacks naturalness and is
difficult to control in terms of speaker characteristics and
emotional tone. A key challenge in this field is content leakage,
where content unintentionally influences style embeddings,
and style leakage, where speaker traits affect style embeddings.
This limitation stems largely from deficiencies in existing
speech representation methods, which fail to isolate these
attributes effectively.

Incorporating Information Theory tools into disentangled
representation learning has opened new avenues for improving
the precision of attribute manipulation. Variational mutual in-
formation (VMI) estimators have been particularly influential,
as seen in the work of Belghazi et al. [10], which leverages
these estimators by imposing independence between latent rep-
resentations. However, existing estimators such as Mutual In-
formation Neural Estimation (MINE) [10], Information Noise-
Contrastive Estimation. (InfoNCE) [11], and Contrastive Log-
ratio Upper Bound (CLUB) [12], suffer from high variance.
This variance leads to fluctuating estimates depending on the
sample or batch of data used during training, which can result
in erroneous estimates of mutual information. This instability
reduces the accuracy of capturing true dependencies between
variables, affects model convergence, and degrades perfor-
mance, resulting in less robust estimators and slower training.
Reducing this variance is crucial for improving the reliability
and efficiency of MlI-based disentanglement methods.

This study addresses the issue of high variance in Vari-
ational Mutual Information (VMI) estimators by introducing
two regularized estimators. Specifically, two recently-proposed
probabilistic divergences [13], namely the Worst Case Regret
(WCR) and Convex Conjugate Rényi Divergence (CCR), are
employed as low-variance VMI estimators. These regular-
ized divergences, extending the approach in [14], use Lips-
chitz continuous functions with bounded derivatives, providing
smoother regularization compared to previous estimators that
relied solely on bounded but potentially abruptly changing
functions, such as step functions. By constraining function
gradients and preventing sharp variations, the WCR and
CCR approaches yield statistically stable VMI estimates with
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Fig. 1.

Extension of FastSpeech 2 architecture with new embedding layers for speaker (blue box) and style (green box), and advanced disentanglement

techniques for robust speech synthesis. VMI estimator is shown in the yellow box while GRL is shown with in the red box.

considerably reduced fluctuations. The integration of these
regularized VMI estimators, along with Gradient Reversal
Layers (GRL) [15], into the FastSpeech 2 model [16] resulted
in significantly enhanced capability for effective separation
and precise control of various speech attributes.

II. MATERIALS, MODELS, AND METHODS
A. Dataset

The Expresso Dataset [17], provided by Meta Al, serves
as the primary data source for this study. This dataset con-
sists of high-quality expressive speech waveforms recorded
at 48 kHz. It is specifically designed for speech synthesis
and analysis tasks, featuring annotated audio recordings that
facilitate research in these areas. The dataset includes speech
samples from four speakers —two female and two male— and
offers a variety of speech styles to enhance the robustness
and generalization of speech models. Indeed, the Expresso
Dataset supports a comprehensive array of expressive speech
samples from seven distinctive speech styles. In comparison,
while datasets such as VCTK Corpus and LibriTTS include
recordings from multiple speakers, they lack samples with
expressive variations, such as emotions or intonations. In
contrast, the Expresso Dataset supports both a multi-speaker
configuration and a comprehensive array of expressive speech
samples from seven distinctive speech styles.

B. Model Overview

The proposed model extends FastSpeech 2 by incorporating
speaker identity and style embeddings along with disentan-
glement techniques to improve expressive speech synthesis

as shown in Figure 1. Two additional embedding layers are
introduced: a speaker embedding layer (4 x 256) representing
four distinct speakers and a style embedding layer (7 x
256) capturing seven speech styles (e.g., confused, enunciated,
happy, sad). These conditional embeddings control the synthe-
sis process, enabling variation in speaker and style attributes.
To promote disentangled representations, VMI estimation
methods are optimized to minimize dependencies between
speaker and style embeddings. Both existing VMI estimators —
MINE, InfoNCE, and CLUB- as well as novel VMI estimation
techniques —CCR and WCR- are implemented and tested.
A GRL is also introduced leveraging adversarial training
enforcing stronger separation between speaker and style rep-
resentations. The GRL requires the training of two classifiers:
a speaker classifier and a style classifier which are trained
offline. The model is trained on the Expresso dataset using
a customized data pipeline, ensuring efficient preprocessing,
speaker-style conditioning, and large-scale batch processing.

C. Variational Mutual Information Estimators

Mutual information is defined as the Kullback-Leibler di-
vergence between the joint distribution of a pair of variables,
denoted by Pxy (X,Y), and the product of marginals, denoted
by Px(X)Py(Y). MI value equals to O implies that the
random variables X and Y are independent. Thus, minimizing
the MI between two embeddings results in an unsupervised
approach to disentangle them. In our case, speaker (X) and
style (Y) embeddings from the same audio sample are con-
catenated to form a sample from the joint distribution. In
contrast, a sample from the product of marginal distribution
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is generated by concatenating the speaker embedding with a
randomly permuted style embedding. This approach disrupts
the dependence between the original speaker and style em-
beddings leading to a sample from the product of marginal
distribution.

The estimation of MI from samples is a challenging prob-
lem especially in the high dimensional setting. Therefore,
variational formulas for the Kullback-Leibler divergence or
directly for MI have been proposed. As already mentioned,
those VMI estimators such as MINE, InfoNCE and CLUB,
have high variance. Instead of Kullback-Leibler divergence,
we propose to use a different family of regularized divergences
which also admit variational representation formulas for the
estimation of MI. The CCR divergence reformulates traditional
Rényi divergence by eliminating risk-sensitive terms, thereby
improving the stability of MI estimation for disentanglement.
The definition of CCR divergence is given by
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where Lip' is the Lipschitz continuous function space with
Lipschitz constant equal to 1 while « is a scalar controlling
the focus put by the CCR divergence to the tails of the two
distributions. Taking the limit as « — oo, the WCR divergence
is obtained. Its variational formula is given by
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Both CCR and WCR divergences extend the traditional MI
estimation techniques by focusing on the maximum possi-
ble discrimination between distributions, ensuring enhanced
robustness in disentanglement processes. WCR divergence
in particular is designed to address worst-case scenarios in
the variability of speaker-style attributes, by measuring how
significantly two distributions can diverge from one another
under the least probable regimes.

The estimation of the above formulas requires the following
two approximations. Firstly, the function g is parameterized
by a neural network comprising four linear layers with ReL.U
activations. The constraint that g € Lip', is enforced via a
standard gradient penalty to bound excessive variations of
the derivatives [18]. Secondly, the integrals are approximated
by statistical averages using the available samples from both
the joint and the product of marginal distributions. The last
step for the VMI estimation of the divergences is to optimize
over the parameters of the neural network which is done by
incorporating it as a regularization term in the FastSpeech 2
loss, controlled by a scaling parameter Ay psr:

Liotat = LFastSpeech2 + AvmrLv s €))

CCR is defined for any «, but « = 1 and Ay = 0.1
were used in all experiments to reduce variance and ensure

stable training. Here, Ly js; denotes the estimated mutual
information loss based on the selected divergence (e.g., CCR
or WCR given by (1) and (2), respectively).

D. Gradient Reversal Layer

The GRL method is a supervised approach employed to
enforce speaker and style disentanglement by adversarially
training the embedding layer. Two feed-forward classifiers
are trained offline to optimize the model’s speech synthesis
capabilities: one for speaker identity and another for speaking
style. Each classifier comprises a sequence of layers starting
with a Linear layer followed by a ReLU activation, repeated
three times, and culminating in another Linear layer. Both
classifiers are optimized using the standard cross-entropy loss,
given by (4), to effectively learn to solve the classification
tasks.

C
Lew(y,9) = = yelog(ye) 4
c=1

The GRL enforces disentanglement by reversing gradients
from the classification losses Lgpeaker and Lytyie before updating
the embedding layer. This forces the model to learn represen-
tations that are invariant to speaker and style attributes. The
adversarial loss is formulated as:

LGRL = /\GRL (Lspeaker + Lsty]e) (5)

where Ag g controls the influence of reversed gradients. This
joint optimization enhances the model’s ability to generate
high-quality speech while ensuring robust and disentangled
speaker and style representations. In all experiments, Agrr, =
0.1 was set.

E. Metrics Used

Speaker and style disentanglement effectiveness is evaluated
using Cosine Similarity, Cosine Distance, and Average Inter-
Cluster Distance.

Given two embedding vectors u; and u;, the cosine simi-
larity is computed as:

AR ©)
i [l s
This metric measures the angular similarity between two
vectors, with values ranging from -1 (opposite) to 1 (identical),
where higher values indicate stronger similarity.

The Cosine Distance, used to quantify dissimilarity between
embeddings, is defined as:

Cosine Similarity =

Cosine Distance = 1 — Cosine Similarity @)

A higher cosine distance indicates better separation between
speaker or style embeddings.

Finally, the Average Inter-Cluster Distance, which quantifies
the overall separation between clusters, is defined as:

. 1 . .
Average Inter-Cluster Distance = N Z Cosine Distance(u;, u;)
44,177
®)
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where N represents the total number of embedding pairs.
Higher values indicate greater separation between clusters,
reflecting improved disentanglement of speaker and style
representations.

Speech synthesis evaluation was conducted using both ob-
jective and subjective methods. Objective metrics included
STOI (0-1 scale for intelligibility) and PESQ (0-4.5 scale for
quality), computed on 40 randomly selected training sentences.
Additionally, a subjective A/B listening test with 100 par-
ticipants assessed intelligibility and expressiveness across 10
paired tests using high-quality headsets, providing perceptual
insights into synthesized speech.

III. RESULTS AND DISCUSSION

A. Objective Metrics

Speaker and style disentanglement was evaluated using the
Average Inter-Cluster Distance metric. As shown in Table I,
the CCR&GRL model achieved the highest distances for
speaker (0.9002) and style (0.7616) embeddings, indicating
maximum separation of representations. These higher average
distances between embeddings signify a more distinct and
clear separation between different speakers and styles, under-
scoring the model’s effectiveness in minimizing the mutual
information between these disentangled features.

The results demonstrate that the combined application of
CCR & GRL techniques outperforms the application of each
technique individually. Specifically, the CCR technique stabi-
lizes the disentanglement process by effectively managing the
variability inherent within the training data. In contrast, the
GRL technique addresses the reduction of mutual dependen-
cies between speaker and style embeddings. It accomplishes
this by introducing an adversarial component that promotes
feature independence, thereby ensuring that variations in one
feature (e.g., speaker identity) do not influence the encoding of
another (e.g., speech style). The integration of both techniques
thus leads to a more robust and comprehensive disentangled
speech representation.

The cosine similarity matrices for the CCR & GRL model,
presented in Figure 2, further validate this finding, reporting
low values for inter-speaker and inter-style pairs, confirming
their independence. Near-zero values in the cosine similarity
matrices indicate that the embeddings for various speakers and
styles are almost orthogonal, demonstrating clear differentia-
tion when comparing distinct speakers and styles separately.
This significant separation highlights the model’s proficiency
in disentangling and preserving the unique characteristics of
each speaker’s identity and style.

Speech intelligibility and quality were evaluated using STOI
and PESQ metrics. As shown in Table II, the CCR & GRL
model achieved the highest STOI (0.3011) and PESQ (1.1576)
scores, indicating superior performance. This improved per-
formance can be attributed to the effective separation and
independence achieved in speaker and style embeddings within
the model. Such distinct disentanglement not only enhances
the clarity and naturalness of the synthesized speech but also

TABLE I
AVERAGE INTER-CLUSTER DISTANCE FOR SPEAKER AND STYLE
EMBEDDINGS

Model Speaker Embeddings  Style Embeddings
CCR&GRL 0.9002 0.7616
CCR 0.8754 0.7566
GRL 0.8749 0.7316
WCR 0.8484 0.6950
CLUB 0.8444 0.6911
MINE 0.7528 0.7200
InfoNCE 0.6576 0.6266
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Fig. 2. Cosine similarity matrices for Speaker and Style embeddings.

significantly boosts its intelligibility and quality, as quantita-
tively validated by these evaluations.

TABLE II
STOI AND PESQ SCORES: MEAN AND STANDARD DEVIATION

Model STOI PESQ
Mean Std Devn  Mean  Std Dev

CCR&GRL  0.3011 0.1202 1.1576 0.2748
CCR 0.2537 0.1771 1.1162 0.2117
WCR 0.2379 0.1661 1.0837 0.2009
GRL 0.2272 0.0967 1.0907 0.2995
MINE 0.2163 0.1207 1.0722 0.1905
InfoNCE 0.2147 0.1202 1.0795 0.1870
CLUB 0.1864 0.0924 1.1114 0.2559

B. Subjective Evaluation

Ten A/B tests evaluated on different pairs of model configu-
rations and focused on various speech styles and intelligibility
were conducted. Table III summarizes the results, showing
the number of participants who preferred each sample. To
ensure diverse and representative feedback, participants were
selected across different age groups and genders. The gender
distribution consisted of 40% female and 60% male listeners,
while the age distribution was as follows: 30% aged 18-25,
40% aged 26-35, 20% aged 36-50, and 10% aged 51-60.

The CCR&GRL model consistently demonstrated superior
performance, particularly in conveying intelligibility, sadness,
and confused speech styles, highlighting its effectiveness in
speaker-style disentanglement. The results from the A/B tests
highlight the CCR&GRL model’s ability to effectively adapt
to nuanced emotional tones and complex linguistic patterns,
crucial for realistic speech synthesis. Its strong performance
in handling emotions like sadness and confusion demonstrates
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the technical and emotional effectiveness of its disentangle-
ment techniques. The significant user preference for the model
trained with both CCR and GRL, as demonstrated by the tests,
suggests that the CCR&GRL model could achieve greater
adoption in practical applications. Audio samples generated
by the proposed models can be found at https://stoma.iacm.
forth.gr/eusipco2025.html.

TABLE III
A/B TESTING RESULTS FOR SPEECH SYNTHESIS EVALUATION

Test Type Sample A Count Sample B Count
1 Intelligibility =~ CCR&GRL 84 CLUB 16
2 Confused CCR&GRL 87 WCR 13
3 Laughing MINE 16 CCR&GRL 84
4 Whisper InfoNCE 15 CCR&GRL 85
5 Sad CCR&GRL 89 InfoNCE 11
6 Confused InfoNCE 12 CCR&GRL 88
7 Happy CCR&GRL 71 CCR 29
8 Sad CCR&GRL 87 CLUB 13
9 Intelligibility = CLUB 7 CCR&GRL 93

10 Sad GRL 15 CCR&GRL 85

IV. CONCLUSIONS AND FUTURE WORK

This work introduced improved disentangled speech rep-
resentation methods within the FastSpeech 2 framework,
combining advanced VMI estimators and GRL. The model
improves clarity, naturalness, and personalization of synthetic
speech, as validated by objective metrics (PESQ, STOI, inter-
cluster distance) and subjective A/B testing with diverse lis-
teners.

Looking forward, the focus will shift towards scaling the
model to handle larger and more varied datasets to ensure
greater robustness against diverse linguistic and acoustic en-
vironments. This scale-up is essential for addressing more
complex speech synthesis challenges. Extending towards zero-
shot learning techniques will enable to effectively handle
unseen data without the need for retraining. Furthermore,
advancing the development and integration of VMI estimators
is anticipated to enhance the precision of attribute disentan-
glement even further. By refining these estimators, the model
will be able to better separate and control individual speech
characteristics such as tone, style, and emotional content.
Extending these refined methods beyond the realm of speech
synthesis into multimodal systems presents another important
research direction.
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