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Abstract—In this paper, we propose a multichannel extension
of Language-Queried Audio Source Separation (LASS) using
Independent Vector Analysis (IVA). LASS enables the separation
of arbitrary sound sources from a mixture based on natural
language descriptions; however, conventional models assume a
single-channel input and do not utilize spatial information. As
one approach to extending LASS to multichannel processing, we
consider utilizing LASS-separated signals as source models in
Auxiliary-function-based IVA (AuxIVA), leveraging spatial and
language query information for multichannel source separation.
Furthermore, we investigate two approaches for integrating the
LASS-separated signals into the IVA framework: a weighted
arithmetic mean and a weighted geometric mean for mixing
the source model variances. We demonstrate that the weighted
geometric mean achieves higher separation performance through
simulation experiments than the arithmetic mean. Experimental
results indicate that the proposed method successfully extends
LASS to multichannel source separation.

Index Terms—blind source separation, language-queried audio
source separation, multi-channel signal processing

I. INTRODUCTION

Sound source separation is a technique for separating sound
mixtures containing multiple sound sources into individual
sound sources. Various methods have been proposed that
are specific to different types of sound sources, such as
music separation, speech enhancement, and acoustic event
separation. Blind Source Separation (BSS) [1], [2] assumes
multi-channel inputs and uses the spatial information in the
mixed signals to separate the sound sources. A popular method
includes Auxiliary-function-based Independent Vector Analy-
sis (AuxIVA) [3]. One of the AuxIVA variants assumes time-
varying Gaussian distribution with constant variances among
frequencies as the source models [4].

On the other hand, universal sound separation (USS), which
aims to separate arbitrary sound sources from various types
of sound sources in real-world recordings, has been studied
extensively in recent years [5]–[7]. In particular, Language-
queried Audio Source Separation (LASS) [8], [9] enables
source separation based on natural language descriptions. Most
existing LASS models focus on single-channel separation.
While they achieve strong separation performance, they do
not explicitly leverage spatial information in the same way as
conventional BSS methods.

Meanwhile, Neural Beamformer [10] is an example of a
method that integrates single-channel time-frequency mask

estimation into multichannel processing by incorporating it
into beamformer design. This demonstrates that single-channel
separation techniques can effectively combine with multichan-
nel spatial processing to improve separation performance. In
a similar way, model-based IVA [11]–[13] was proposed as
a framework incorporating single-channel source separation
methods into multichannel BSS to enhance separation ac-
curacy. Although many methods that apply DNNs to multi-
channel source separation with full-rank spatial covariance
models and local Gaussian models [14]–[18], extending LASS
to multichannel processing enables flexible source separation
guided by natural language queries while also providing
practical advantages. Specifically, it eliminates the need for
additional training of a multichannel model by leveraging a
pretrained single-channel LASS model.

Therefore, in this paper, as one of the multichannel ex-
tensions of LASS, we propose a method that utilizes LASS-
separated signals as source models for model-based IVA. To
achieve effective integration, we introduce a novel approach
for mixing source model variances using a weighted arithmetic
mean and a weighted geometric mean. Through simulation
experiments assuming time-invariant sound propagation, we
demonstrate that the weighted geometric mean achieves higher
separation performance than the arithmetic mean. These results
indicate that our method provides a promising approach for
extending LASS to multichannel processing by appropriately
incorporating IVA, demonstrating an effective strategy for
leveraging both spatial and language query information in
source separation.

II. RELATED WORK

A. Language-queried audio source separation

LASS is one of the frameworks of USS, which is a task
to separate arbitrary sound sources from a mixture of various
types of sound sources. AudioSep [9], a representative method
of LASS, was also selected as the baseline algorithm for
Detection and Classification of Acoustic Scenes and Events
(DCASE) 2024 Task 9, a mainstream international competi-
tion in the field of sound environment recognition. LASS is
characterized by its ability to query specific sound sources
using intuitive natural language descriptions and to include
auxiliary information such as the temporal relationship of
the target sounds. The LASS model consists of a query
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Fig. 1. Block diagram of conventional and proposed methods.

encoder and a separation network. The query encoder is a
Contrastive Language-Audio Pre-training (CLAP) model [19]
that has been pre-trained on labeled audio-text pair data. The
separation network is trained to estimate the separation mask
corresponding to the input text. A block diagram of LASS is
shown in Fig. 1 (a).

B. Blind source separation

BSS is a task to estimate individual sound source signals
from mixed signals. It does not require any information about
the mixture, such as the positional relationship between the
sound sources and microphones or spatial impulse response,
and can be applied without pre-training. We assume a de-
termined condition (M ≥ N ), where M is the number of
microphones and N is the number of sources. A block diagram
of the BSS is shown in Fig. 1 (b).

Let x(f, t) = [x1(f, t), ..., xM (f, t)]⊤ ∈ CM be the mixed
signals in the Short-Time Fourier Transform (STFT) domain,
f be the discrete frequency bin index, and t be the discrete
time frame index. Let y(f, t) = [y1(f, t), ..., yN (f, t)]⊤ ∈ CN

be the separated signals, and estimate the separation ma-
trix W (f) = [w1(f), ...,wN (f)]H ∈ CM×N according to
y(f, t) = W (f)x(f, t) so that each element of the separated
signals is statistically independent.

AuxIVA [3] is one of the popular BSS methods and alter-
nately updates the weighted covariance matrix Vi(f) and the

separation matrix W (f) as

Vi(f) =
1

T

T∑
t=1

x(f, t)xH(f, t)
1
F

∑F
f=1 |yi(f, t)|2

, (1)

wi(f)← (W (f)Vi(f))
−1ei, (2)

wi(f)←
wi(f)√

wH
i (f)Vi(f)wi(f)

, (3)

where i is the sound source index, T is the number of time
frames, F is the number of frequency bins, ·H is the complex
conjugate transpose of the vectors, and ei and wi(f) are the
i-th row vectors of the identity matrix and separation matrix,
respectively.

Most conventional methods based on AuxIVA employ the
time-varying Gaussian distribution as its source model [4]
and assumes that the variance of the distribution is constant
across frequencies. More flexible source model with different
variance for each time-frequency component would improve
separation performance. Therefore, model-based IVA [11],
which uses the separated signals by single-channel source
separation or binary masking as the source models, was
proposed. In model-based IVA, the denominator in eq. (1) is
replaced by the separated signal zi(f, t) as

Vi(f) =
1

T

T∑
t=1

x(f, t)xH(f, t)

|zi(f, t)|2
. (4)

III. LASS MODEL-IVA

A. Procedure of LASS model-IVA

In this study, we propose a method of using the separated
signals of LASS as source models for model-based IVA as one
of the multi-channel extensions of LASS. A block diagram of
the proposed method is shown in Fig. 1 (c). The procedure of
the proposed method is as follows.

First, various types of sound sources are observed with
multiple microphones. In this paper, we assume that all sources
propagate from a single location to the microphones with time-
invariant impulse responses. In other words, this is the same
problem formulation assumed in the BSS.

Next, we apply LASS to the observed signals, each with
a different language query. For example, if speech and music
are observed, “speech” and “music” are given.

Finally, we apply IVA using the separated signal by LASS
as the variances of the source models (LASS model-IVA) to
the observed signals. Algorithm 1 summarizes the procedure
of updating the separation and covariance matrices in LASS
model-IVA. We explain the details of how we calculate the
covariance matrix in the next subsection.

B. Mixing LASS variance and IVA variance

When calculating the variance of the IVA source model,
if we simply give the separated signals by LASS as zi(f, t)
in (4), the separation performance of the proposed method
is directly affected by the one of LASS. Therefore, the final
separation performance will be worse if the language query
is not appropriate or if the LASS does not separate well.
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Algorithm 1 Procedure of LASS model-IVA
Require: Set the number of iterations Ni

Require: Set the mixing method of variance, arithmetic
or geometric

Require: Initialize separation matrices W (f) (∀f)
1: zi(f, t)← separated signal by LASS (∀i, f, t)
2: for iter = 1 to Ni do
3: y(f, t) = W (f)x(f, t) (∀f, t)
4: for i = 1 to N do
5: C2

i (f)←
∑T

t=1 |zi(f,t)|2∑T
t=1

1
F

∑F
f=1 |yi(f,t)|2

(∀f)
6: if mixing method of variance is arithmetic then
7: Caclculate σ2

i (f, t) (∀f, t) by (5)
8: else if geometic then
9: Caclculate σ2

i (f, t) (∀f, t) by (6)
10: end if
11: Vi(f)← 1

T

∑T
t=1

x(f,t)xH(f,t)
σ2
i (f,t)

(∀f)
12: wi(f)← (W (f)Vi(f))

−1ei (∀f)
13: wi(f)← wi(f)√

wH
i (f)Vi(f)wi(f)

(∀f)
14: end for
15: y(f, t) = W (f)x(f, t) (∀f, t)
16: end for

Thus, we propose an approach that uses a mixture of the
variances obtained from the separated signals of the LASS
and the variances used in conventional IVA as the variances
of the source models. We expect more robust separations with
this approach.

A conventional mixing method for variance is weighted
arithmetic mean [20], [21]. However, we consider two types of
variance for the different mixing methods: weighted arithmetic
mean

1

σ2
i (f, t)

= α
1

|zi(f, t)|2
+ (1− α)

1

C2
i (f)

1
F

∑F
f=1 |yi(f, t)|2

,

(5)

and weighted geometric mean

1

σ2
i (f, t)

=
1

(|zi(f, t)|2)α(C2
i (f)

1
F

∑F
f=1 |yi(f, t)|2)1−α

,

(6)

where α is a hyperparameter indicating the weight of the
variance and C2

i (f) is a coefficient used to scale the separated
signals by IVA and LASS calculated as

C2
i (f) =

∑T
t=1 |zi(f, t)|2∑T

t=1
1
F

∑F
f=1 |yi(f, t)|2

. (7)

We then update the weighted covariance matrix as

Vi(f) =
1

T

T∑
t=1

x(f, t)xH(f, t)

σ2
i (f, t)

. (8)

Note that hereafter, LASS-model IVA also refers to a model
using the variance mixing described in this subsection for
simplicity.

IV. EXPERIMENTS

A. Setup

Multi-channel mixed signals were created by simulation
using Pyroomacoustics [22]. Note that we are assuming that
all sound sources propagate from a single location to the mi-
crophones with time-invariant impulse responses. The number
of sound sources and microphones were set to two each, with a
distance of 2m between sound sources and microphones, and
a microphone distance of 0.02m. The directions of arrival of
the sound sources were selected in pairs from a predefined
set of angles: 30◦, 45◦, 60◦, 90◦, 120◦, 135◦, and 150◦.
This results in 21 unique source direction pairs. The sampling
frequency was 16 kHz and the reverberation time was 200ms.
For STFT, a Hamming window of frame length 4096 was
shifted with 1/2 overlap. We selected speech and music as
sources for which the assumption that sound propagates to
the microphone with a time-invariant impulse response from
a single position is valid, and used 50 samples each from
JSUT [23] and MUSDB18 [24], respectively. The LASS
method was AudioSep-DP [25], a model that achieved first
place in DCASE 2024 Task 9. In IV-B, IV-C, and IV-D the lan-
guage queries were “female speech” and “musical instrument,”
respectively. An evaluation metric for the separated signals was
the Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) [26],
which was compared using the median value of all samples.
We conducted the following four experiments to confirm the
effectiveness of the proposed method.

B. Evaluating proposed method for each parameter

To select the optimal parameters for the proposed method,
we compared the mixing method (arithmetic mean or ge-
ometric mean) and the mixing ratio (α = 0.1, 0.2, ..., 1.0)
of the variances with and without scaling by C2

i (f). The
experimental results are shown in Table I. The results show
that the proposed method achieves the highest SI-SDR im-
provement when the weight of variance of LASS is 0.4 and the
mixing method is geometric mean, and there is no scaling by
C2

i (f). This means that higher separation performance can be
achieved by moderately mixing the variance of IVA updated by
iterations, rather than using only the variance of LASS as the
variance of the model. In addition, comparing the arithmetic
mean and the geometric mean, the geometric mean achieved a
higher overall improvement in SI-SDR. Comparing with and
without scaling by C2

i (f), in the case of the arithmetic mean,
scaling significantly improves the SI-SDR improvement. In
subsequent experiments, we used the optimal parameters for
the proposed method.

C. Evaluating model-IVA for each source model

To verify the efficacy of the separated signals by LASS
as source models for IVA, we compared conventional model-
based IVA methods with that of IVA using the separated
signals by AudioSep-DP as source models (LASS model-IVA).
Model-based IVA methods include time-varying Gaussian
model (TG model-IVA) and Independent Low-Rank Matrix
Analysis (ILRMA) [27]. Note that the well-known ILRMA
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is referred to as NMF model-IVA to maintain consistency
with the names of other methods in this paper. To confirm
the performance limits of model-IVA, we also compared
IVA using the observed signals before mixing as the source
models (hereafter referred to as Oracle model-IVA). Note
that the oracle source signals are not available in real-world
applications for Oracle model-IVA. The number of bases for
NMF model-IVA was set to 5 and 10.

The separated signals of the four methods are compared
in terms of SI-SDR improvement and plotted in a box-and-
whisker diagram as shown in Fig. 2 (a). The results show
that the proposed method, LASS model-IVA, achieves higher
separation performance than TG model-IVA and NMF model-
IVA. Therefore, the separated signals of AudioSep-DP are
superior to the conventional model of AuxIVA as a source
models.

D. Separation performance of LASS for each input signal

To further improve the separation performance, AudioSep-
DP was applied to the mixed, TG model-IVA separated,
and LASS model-IVA separated signals, respectively, and we
compared the SI-SDR of the final separated signals. As shown
in Fig. 2 (b), the SI-SDR of the separated signals by AudioSep-
DP was lower when the separated signals by TG model-IVA
was used as input than when the mixed signals was used as
input. Even when the input was a separated signal by the
LASS model-IVA, the applying of AudioSep-DP reduced the
SI-SDR improvement of the separated signal. Thus, despite
the improvement of SI-SDR from the mixed signal by the
multi-channel BSS, the SI-SDR of the separated signal was
inferior when AudioSep-DP was applied as post-processing.
One possible cause of this is a mismatch between the training
and evaluation data due to the fact that the training data for
AudioSep-DP does not include the BSS separation signal.

In addition, comparing the separation performance of the
LASS model-IVA and LASS alone, the LASS model-IVA
achieved higher SI-SDR improvement. Therefore, in the case
of time-invariant propagation as assumed in this study, uti-
lizing AudioSep-DP as a source models for model-IVA will
improve the final separation performance, rather than simply
applying it.

E. Separation performance of LASS for each caption of dif-
ferent lengths

To investigate the difference in the separation performance
of LASS with caption length, we compared the separation
performance of three methods using LASS (LASS, LASS
model-IVA, and LASS model-IVA + LASS) with three types
of captions generated using pre-trained Hierarchical Token-
Semantic Audio Transformer (HTSAT) [28] as the language
query. We calculated SI-SDRi independently for JSUT and
MUSDB18. The average number of words in the captions of
JSUT and MUSDB18 were [2.00, 5.00, 8.16], [1.88, 5.12,
7.54], in the order [short, middle, long], respectively. Example
captions are shown in Table II.

TABLE I
RESULTS OF EXPERIMENTS IN IV-B. BOLD IS THE HIGHEST SI-SDR

IMPROVEMENT [DB].

α w/o C2
i (f) w/ C2

i (f)

arithmetic geometric arithmetic geometric

0.1 8.127 8.571 8.682 8.649
0.2 7.750 9.775 8.632 9.833
0.3 7.364 10.18 8.551 10.20
0.4 7.186 10.28 8.457 10.27
0.5 6.905 10.06 8.346 10.07
0.6 6.049 9.728 8.258 9.737
0.7 4.104 9.312 8.158 9.324
0.8 4.104 8.967 8.104 8.966
0.9 6.345 8.653 8.032 8.653
1.0 7.909 8.420 7.912 8.420

(a) Comparison of 
source models of IVA

(b) Comparison of 
input signal of LASS

Fig. 2. Results of experiments in IV-C and IV-D. The number in the
box-and-whisker diagram is the median SI-SDR improvement [dB]. Red is
the conventional method. Blue is the proposed method. TG: Time-varying
Gaussian. NMF: Nonnegative Matrix Factorization. LASS: AudioSep-DP.

LASS model-IVA LASS LASS model-IVA
+ LASS

Fig. 3. Results of experiments in IV-E. The number in the box-and-whisker
diagram is the median SI-SDR improvement [dB].

The experimental results are shown in Fig. 3. The results
show that the SI-SDR improvement for all three methods
improved as the number of words in the caption increased.
This is thought to be due to the fact that MUSDB18 is
composed of sound sources containing multiple instrumental
sounds, and the increased number of words allows for a better
representation of the sound sources.

V. CONCLUSION

In this paper, we proposed a multichannel extension of
LASS using AuxIVA. While conventional LASS models focus
on single-channel separation, our approach leverages LASS-
separated signals as source models in IVA, incorporating
both spatial and language query information for multichannel
source separation.
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TABLE II
EXAMPLE CAPTIONS FOR EACH OF THE THREE CAPTION LENGTH TYPES.

Dataset Caption length Example caption
JSUT 1 short a female

middle a female voice is speaking
long a female voice is saying a phrase

MUSDB18 [24] short music is
middle music is playing
long music is playing in a

large room or hall

To effectively integrate LASS-separated signals into IVA,
we introduced a mixing source model variances using a
weighted arithmetic mean and a weighted geometric mean.
Through simulation experiments, we demonstrated that the
weighted geometric mean achieves higher separation perfor-
mance than the arithmetic mean, providing a more effective
strategy for variance estimation in model-based IVA.

These results indicate that our method successfully extends
LASS to multichannel processing while ensuring efficient
integration with IVA. By leveraging pretrained single-channel
LASS models, our approach eliminates the need for additional
multichannel model training and offers a computationally
efficient alternative to deep learning-based multichannel sep-
aration methods.
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