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Abstract—Room acoustics significantly impact the perfor-
mance of Sound Event Classification (SEC) models. To address
the challenges posed by diverse real-world conditions, researchers
have explored methods that incorporate knowledge of recording
environments into model design and learning. Existing ap-
proaches typically focus on improving robustness by identifying
acoustic condition invariant features. However, a gap remains
in generalization to unseen environments. This article proposes
leveraging available information about the acoustic condition
to enhance SEC model robustness through (a) a contextual
SEC model that incorporates known (and potentially dynamic)
acoustic characteristics and (b) a multi-task learning scheme that
disentangles acoustic conditions within the neural network’s em-
bedding representation. This approach allows the SEC model to
adapt its behavior based on the acoustic environment. Compared
to alternative methods, the proposed approach improved the
weighted F1-score by 2.9% and reduced performance variation
across validation folds by 5.14% in challenging, unseen acoustic
conditions.

Index Terms—Sound event classification, acoustics, deep learn-
ing, contextual classifier.

I. INTRODUCTION

Sound Event Classification (SEC) refers to the task of
identifying and classifying events within a sound signal. The
field of SEC has widespread applications, including healthcare,
security, environmental monitoring, and livestock monitoring.
Microphones, the sensors behind sound capture, deliver rich
data to derive insightful information about the monitored
environment [1]. With the recent progress in Deep Learning
(DL), several DL models have been proposed for SEC. More
specifically, models that include convolutional, recurrent layers
and/or transformer layers are popular and effective in SEC, as
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can be observed from the recent DCASE1 challenge results of
task 4.

In real-life applications, the performance of SEC models
is affected by the presence of noise and room acoustic con-
ditions, which differ from those in the training set [2]. The
model robustness can generally be improved by extending the
training data to include more variability in for example room
acoustics. However, expanding the dataset can be costly, time-
consuming, and impractical for covering all possible scenarios.
Therefore, the literature has studied methods to improve the
model robustness in SEC without requiring additional physical
measurements.

A simple approach, that has proven to be effective in
boosting performance, is to augment the data set with synthetic
examples that are created by convolving (clean) data with
Room Impulse Response (RIR) filters [3], [4]. Other methods
to improve the model robustness employ adapting learning
schemes to enforce the extraction of acoustic features that
are agnostic to variations in acoustic conditions. For example,
the work in [5] presented a learning method that suppresses
specific environmental factors by trying to achieve condition
invariant features by element-wise affine transformations be-
tween sound event features and auxiliary information from
corresponding room impulse response. This successfully re-
duced performance degradation caused by the reverberation
of the room.

Echo-aware feature refinement using spatial cues of the
unknown environment obtained through measuring acoustic
echoes was proposed in [6]. The feature refinement in do-
main adversarial training achieved generalization of features
across conditions, improving the robustness of the SEC in
varying acoustic conditions. The work in [7] proposed the

1https://dcase.community/challenge2024/
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Room Acoustic Adversarial Neural Network (RAANN) train-
ing scheme by exploiting knowledge of underlying acoustic
metrics describing the properties of the underlying recording
conditions. RAANN searches for a set of features that optimize
the SEC performance across a range of acoustic conditions
while minimizing the predictive performance of the regres-
sion function that estimates the room acoustic metrics. This
improved the performance for acoustic conditions that were
harder than those seen during the learning phase.

Another set of articles describes the use of domain adapta-
tion [8] to adapt SEC models to better match the acoustic con-
ditions of the target environment. Even though such methods
have been effective in improving the performance of the target
environment, they require data recorded in the target domain,
and a subsequent training step to specialize the models for the
target environment. This might be a bottleneck in practical
settings.

Although these methods have achieved significant perfor-
mance gains, they still fall short of human-level generalization
[9], [10]. In applications such as livestock monitoring, acoustic
conditions are highly dynamic due to factors like animal
growth and environmental changes. Therefore, a contextual
model capable of adapting its behavior based on the surround-
ing acoustic conditions is expected to be beneficial.

In this work, a novel method to learn contextual SEC
models is proposed. For this purpose, it is assumed that
for every recording, the RIR [11] of the room where the
recording was made is available. With this RIR, the proposed
learning scheme targets enhancing the internal embedding
representation of the SEC model to have an improved gener-
alization to unseen environments. Note that each classification
requires a sound recording and a RIR. However, unlike domain
adaptation models, no model retraining is required to adapt the
model to an unseen environment.

The remainder of the paper is organized as follows. Sec. II
describes the methods, including the metrics to describe the
room acoustic conditions and the deep learning model archi-
tecture. The experimental dataset and results are discussed in
Sec. III. The conclusions are given in Sec. IV.

II. METHODS

A. SEC processing pipeline

The model architecture employed in this study is outlined in
Fig. 1. The framework uses log mel-spectrogram as the input
representation, which is a popular choice in deep learning
based SEC models [12]. This is followed by a pretrained
feature encoder (such as VGGish [13]) that generates high
level feature maps which are then fed into label predictor
block.

B. Learning contextual SEC models

Conventionally trained SEC models have poor generaliza-
tion when trained on a dataset with a certain set of acoustical
conditions and tested on a dataset with a distributional shift
caused by a change in acoustic conditions. Instead of focusing

on identifying acoustic condition invariant features, this re-
search proposes to disentangle acoustic condition as a distinct
factor within the neural network’s embedding representation.
By explicitly accounting for acoustic conditions, represented
by some simple metric like Direct to Reverb Ratio (DRR) [14],
the robustness of the model to novel acoustic environments
could be enhanced. For instance, if acoustic conditions are
factored out and represented as an embedding factor, and
the training data includes rooms with both high and low
DRR values, the model could generalize to intermediate DRR
values. Moreover, the model may extrapolate from high to very
low DRR values with little or no additional training data.

To achieve this goal, a multi-task learning framework is
proposed, where the primary SEC task is supported by an
auxiliary acoustic condition estimator. In this setup, both the
SEC performance (classification task) and the estimation of
an acoustic metric (regression task), such as DRR (related
to the room where the sound is recorded), are optimized.
Both tasks share a common embedding representation, which
is designed to facilitate the discrimination of different sound
events conditioned on the acoustic environment.

Assume a data set {(Xi,yi,Ci,di)}ni=1 where Xi ∈ Rf×t

and Ci ∈ Rf×t are time-spectral representations of a sound
fragment and corresponding RIR respectively, with f the
number of spectral components and t the number of time
frames, yi ∈ {0, 1}c a one-hot encoded vector that indicates
the class label of the event where c is the number of classes,
and di ∈ Rm where m is the number of room acoustic metrics
used in the acoustic estimator. The room acoustic metrics are
min-max normalized to a range of 0 and 1.

The model architecture given in Fig. 1 includes an event
feature encoder Gf , an acoustic condition encoder Ga, a clas-
sifier model Gy , and a regression model Gd, which estimates
some metric describing the acoustic condition. The parameters
in the model are optimized using the following objective,

min
Gf ,Gy,Gd

1

n

n∑
i=1

c∑
j=1

yi(j) log(Gy (Gf (Xi) ∥Ga (Ci)))

+
λ

n

n∑
i=1

m∑
k=1

|di(k) −Gd (Gf (Xi) ∥Ga (Ci)) | (1)

where trade-off parameter λ balances the importance of both
terms in the objective. di(k) corresponds to the kth room
acoustic metric for sample i, yi(j) corresponds to the true
label in one hot encoded format of class j for sample i, and ∥
represents the concatenation operation. The classification loss
Ly (left term) is based on a Categorical Cross Entropy (CCE)
objective, and the regression loss Ld is based on a Mean
Absolute Error (MAE) objective, as in the previous study [7].

As seen in Fig. 1, during model learning the Ly loss
influences the Gy network, and Ld has an impact on Gd.
They both impact the learning of Gf . Note that for Ga, a fixed
model is used to translate the time-spectral representation of
a (RIR) to a lower dimensional representation. Such represen-
tation can be learned using an autoencoder setup as used in
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Fig. 1. Learning framework for contextual SEC.

[15]. By concatenating event features with acoustic condition
encodings, factors related to the acoustic environment are
incorporated into the embedding space. However, embeddings
from different environments may exhibit significant overlap.
To address this, when the embedding representation is used
to estimate a room-specific acoustic metric, the learning al-
gorithm encourages a representation where distributions for
different acoustic conditions are more distinct. Given that the
acoustic metrics are continuous, a regression-based approach is
employed. Additionally, the event classifier learns to interpret
features differently based on the acoustic condition. Notably,
during inference, the acoustic estimator model is not utilized.

C. Room acoustic metrics

RIRs characterize the way sound gets propagated from the
source to the receiver and indicates the overall perceptual
quality and intelligibility of the recorded sound. The property
of the room recording conditions like dimensions, building
materials, distance of the source from the receiver, presence
of obstacles, and reflecting surfaces, play a vital role in shaping
the nature of the RIR. The RIR of a room can be measured
and used to derive insightful metrics (including Reverberation
Time (RT60), DRR, Clarity Index (CI), Center time (CT)) [14]
that quantify the impact of room acoustic conditions on the
original sound. Note that the framework can be used for any
other continuous acoustic metric as well as for a combination
of metrics.

III. EXPERIMENTS AND RESULTS

A. Clean sound events and RIRs

The sound events used in this study were taken from the
Real World Computing Partnership (RWCP) dataset [16]. The
dataset contains non-speech sounds recorded in an anechoic

room. From the RWCP dataset, 80 events from each of the 50
pre-selected sound event classes were used [7]. Each sound
event was recorded at a sampling frequency of 16 kHz, and
the event length was 1 s. This dataset is named as ORIG
dataset because it contains unmodified events from the RWCP
dataset. Subsequently, the original data was augmented to
create multiple modified versions by convolving it with a
wide range of RIRs which are described below,

1) Simulated RIRs (SIM)
These RIRs are simulated using the Python RIR-
generator utility [17] based on the image source method.
The key configuration parameters that can be modified
are room dimension, sound source position, receiver
position, and target RT60 values. A total of 40,000 RIRs
were generated in total, covering different combinations
of the above parameters to get a wide variety of RIRs.

2) Echo Thief RIRs (ET)
Echo Thief [18] is a collection of RIRs measured in real-
world conditions. This is a library of RIRs of unique
spaces from around North America, including caves,
skateparks, stairwells, underpasses, glaciers, fortresses,
and more. Unlike simulated ones, these RIRs include the
effect of real acoustic spaces with different materials and
interiors, which brings more diversity in the data. A total
of 74 RIRs were collected.

B. Generated datasets

Four training and test set combinations were generated, in
which the test set always contains more challenging conditions
compared to the training set. Firstly, the ET set of RIRs was
split into two parts: the subset ET 0 has RIRs that have
DRR values in the interval [−5, 14), and the subset ET 1 that
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Fig. 2. Model performance across different DRR conditions.

has more challenging DRR values in the interval [−15,−5).
The split could have been on any of the three room acoustic
metrics: DRR, RT60, or C25. In preliminary experiments [7],
it was seen that all three acoustic metrics were well correlated
with classifier classification performance. Secondly, the data
in ORIG was split into four folds where, in each fold, the
number of examples per event class is balanced. In this way,
four different partitions of training (that has 3 folds) and test
(the remaining fold) are created. Thirdly, to mimic different
recording conditions each clean event is replaced by a version
of the event itself convolved with a RIR that a) for training
is sampled from the SIM and ET 0 sets, and b) for testing
is sampled from the ET 0 and ET 1 sets. As a result, four
combinations of training and testing are generated.

C. Model architectures and learning parameters

The feature encoder (Gf ) (see Fig. 1) is initialized by
a room invariant event feature encoder using the method
described in [7]. The acoustic condition encoder (Ga) is
obtained from a pre-trained CNN autoencoder [15]. Ga is a
fixed encoder network that generates a 64 dimension feature
vector for an input RIR spectrogram. The label predictor was
comprised of two fully connected layers with 512 neurons
each. The output event label predictions are generated by a
softmax activation on the outputs of the last dense layer with
50 neurons. The models are trained with an Adam optimizer,
with an initial learning rate of 1e− 2, and a batch size of 64.

D. Results

In Fig. 2 different models learned by alternative learning
schemes were compared to each other in terms of their
weighted average F1 score (F (w)

1 ) [7], calculated using 4 fold
cross-validation (with folds as defined in Sec. III-B), across
different DRR ranges. For each of the models the same model
architecture as described in Sec. III-C was trained with the
considered learning procedure.

First, a baseline model was trained using a traditional
supervised learning scheme. Next, the baseline all DRR level

model was learned in a similar fashion using the same folds as
in the previous experiment, but now events in the training set
were also convolved with RIRs that are present in the test set
(though the events themselves are never shared between train-
ing and test). The latter represents a best-case scenario where
the data from the unseen test data is recorded in conditions
that were also present during training. It is important to note
that no noise was added to the simulated data, which could
explain the high baseline performance even at relatively low
DRRs.

Fig. 3. PCA projected embeddings for the baseline (top), contextual SEC
without metric estimation (middle), and contextual SEC (bottom). The larger
the size of the data marker, the lower is the DRR of the underlying acoustic
condition.

The complexity for the SEC task increases with decreasing
DRR values as the signal energy of the reflected component
of the sound increases. As can be observed from Fig. 2
the baseline model and baseline all DRR level model have

464



similar performance until DRR range [0, -5) dB after which
the performance, as expected, of the baseline model drops
compared to the baseline all DRR level model.

The contextual SEC models learned using the proposed
strategy have a significantly lower performance drop as the
DRR decreases. Even though all the different acoustic metrics
that were tested in the contextual SEC learning framework
(see Sec. II-C) improved the performance, the CT with 25
percentile of the energy (CT25) gave the best performance
improvement. The value of λ in the model training loss (see
Eq. 1) was empirically selected to be 0.25.

Overall, the performance improved in all DRR ranges.
The performance variation across the validation folds also
decreased considerably. Importantly, for the last DRR range
([-12,-15) dB) the performance improved by 2.9%, and perfor-
mance variation across the validation folds reduced by 5.14%
compared to the baseline model. The contextual CT25 model
consistently outperforms the RAANN classifier model that
was trained to have room invariant features in its internal
representation. Note that this model was also used as a starting
point for the event feature encoder used in all variants of the
contextual SEC models.

In Fig. 3, embeddings of two example event classes (crum-
ple and sticks), convolved with different RIR ranges, are
projected using Principal Component Analysis (PCA). The
visualization compares the baseline model with the contex-
tual CT25 model. Events convolved with RIRs from similar
Direct-to-Reverberant Ratio (DRR) conditions are represented
by similarly sized data markers. The embedding space of the
contextual CT25 model exhibits a different structure com-
pared to the baseline model. Notably, despite no explicit
mechanism enforcing order based on the CT25 acoustic metric,
the embeddings appear to be organized according to their cor-
responding CT25 values. This structured organization suggests
that interpolation (and potentially extrapolation) to unseen
acoustic conditions is feasible.

IV. CONCLUSIONS AND FUTURE WORK

Room acoustics introduce distinctive filtering effects that
alter the characteristics of recorded sound, impacting SEC
performance. The proposed learning scheme for contextual
SEC models leverages knowledge of room acoustic conditions,
enabling the SEC model to adapt its behavior based on the
environment. This approach improves SEC performance across
different DRR ranges and outperforms alternative methods
that focus on RIR-agnostic features. The results highlight the
potential of contextual SEC models in enhancing robustness
to varying acoustic conditions.
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