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Abstract—In this paper, we reformulate online Auxiliary-
function-based Independent Vector Analysis (AuxIVA) by ap-
plying a multiplicative update, which enables source-dependent
control of the forgetting factor. In conventional online AuxIVA,
a well-studied real-time blind source separation (BSS) method,
the weighted covariance matrix, which represents key signal
statistics, is updated using recursive estimation with a scalar
forgetting factor that serves as a uniform weight to all sources.
This uniform weighting may not be optimal, particularly when
some sources move while others remain stationary, as it risks for-
getting important statistical information that should be retained.
In contrast, our proposed method expresses key statistics as a
weighted covariance matrix of separated sources, thereby allow-
ing the forgetting factor to be represented as a diagonal matrix.
This enables more adaptive and precise statistical estimation by
selectively retaining or forgetting signal statistics for each source.
Simulation experiments demonstrate that the proposed method
improves real-time source separation performance compared to
conventional approaches, particularly in dynamic environments
such as when sound sources move.

Index Terms—multiplicative update, forgetting factor, online
blind source separation, independent vector analysis

I. INTRODUCTION

Blind source separation (BSS) is a signal processing tech-
nique for estimating source signals using only mixture signals
observed at microphones, without requiring prior information
such as the direction of signal arrival or the location of the mi-
crophone. Independent Vector Analysis (IVA) [1], [2], one of
the widely studied BSS methods, has been investigated. Real-
time extensions of BSS have also been extensively studied
in response to the demand for real-time acoustic applications
such as automatic speech recognition and hearing aid systems
[3], [4]. In particular, online AuxIVA [5], an online variant
of Auxiliary-function-based IVA (AuxIVA) [6], has gained
attention due to its stability and computational efficiency.
Online AuxIVA has seen many developments in recent years,
including low latency processing [7]–[9], joint optimization
with other processing such as dereverberation [10]–[12], fast
update of the steering vectors [13], [14], and robustness to
microphone rotation [15].

Online AuxIVA sequentially estimates the weighted co-
variance matrix by recursively averaging the past estimate
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and the instantaneous one in the current frame using a pa-
rameter called the forgetting factor. This parameter controls
how much past information is retained at each update. In
stationary environments, the covariance statistics remain time-
invariant, making it important to retain them. In contrast, in
dynamic environments, such as when sound sources move,
past covariance statistics become outdated, and rapid forgetting
is necessary to ensure accurate separation. Thus, dynamically
controlling the forgetting factor is crucial for maintaining
separation performance in real-world scenarios.

However, conventional online AuxIVA employs a scalar
forgetting factor, which applies the same weight to all sources.
As a result, important statistical information that should be
retained may be lost, particularly when some sources move
while others remain stationary. In such cases, the optimal
approach would be to selectively forget only the moving
source while preserving the statistics of stationary sources.

To address this limitation, we reformulate the demixing
matrix update in online AuxIVA by applying a multiplicative
update, which enables source-dependent control of the forget-
ting factor. Our proposed method expresses key statistics as
a weighted covariance matrix of separated sources, thereby
allowing the forgetting factor to be represented as a diagonal
matrix. This enables more adaptive and precise statistical esti-
mation by selectively retaining or forgetting signal statistics for
each source. Simulation experiments confirm that the proposed
method improves real-time source separation performance
compared to conventional approaches, particularly in dynamic
environments.

II. PROBLEM FORMULATION

Let K be the number of microphones and sources, namely
we consider the determined case. In the time-frequency
domain, when the source signals are defined as sf,t =
[s1,f,t, . . . , sK,f,t]

T ∈ CK , the multichannel observed signals
xf,t are modeled as

xf,t =
∑K

k=1 ak,f,tsk,f,t = Af,tsf,t, (1)

where k = 1, . . . ,K is the source signal index, f = 1, . . . , F
is the frequency bin index, and t = 1, . . . , T is the time
frame index. Hereafter, T,H , and det denote vector/matrix
transpose, Hermitian transpose and determinant, respectively.
ak,f,t ∈ CK is the steering vector that represents the
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acoustic transfer characteristics of the kth source to each
microphone, varying with time and frequency. The matrix
Af,t = [a1,f,t, . . . ,aK,f,t], composed of steering vectors, is
known as the mixing matrix.

Online BSS aims to sequentially estimate the source signals
from past and current observations as follows.

yf,t =Wf,txf,t, (2)

where Wf,t = [w1,f,t, . . . ,wK,f,t]
H ∈ CK×K is called the

demixing matrix, which should be ideally the inverse of the
mixing matrix.

III. CONVENTIONAL METHOD

A. Online AuxIVA

Online AuxIVA [5] can be interpreted as estimating the
demixing matrix Wf,t at each time frame by minimizing the
following objective function [14]:

Jt =

t∑
τ=1

K∑
k=1

λt−τ∑t
j=1 λ

t−j
ψ(rk,τ )−

F∑
f=1

log|detWf,t|2,

(3)

rk,τ =
√∑F

f=1|wH
k,f,τxf,τ |2. (4)

From (3)(4), Wf,t is estimated using only the current and past
observed signals {xf,τ |τ ≤ t}. The forgetting factor λ ∈ [0, 1)
determines the weighting of past observations, with larger
values preserving more past information. The contrast function
ψ(rk,τ ) is the negative log-likelihood function of the source
signal and derived from the source model. In this study, as-
suming a time-varying complex Gaussian distribution for each
source, the contrast function is given by ψ(rk,τ ) = r2k,τ/2σ

2
k,τ ,

where σ2
k,τ is the time-varying variance.

For efficiency, online AuxIVA estimates the demixing ma-
trix Wf,t by minimizing the following auxiliary function:

J+
t =

F∑
f=1

K∑
k=1

wH
k,f,tVk,f,twk,f,t −

F∑
f=1

log|detWf,t|2, (5)

Vk,f,t = λVk,f,t−1 + (1− λ)φ(rk,t)xf,tx
H
f,t, (6)

rk,t =
√∑F

f=1 |ŷk,f,t|2, (7)

ŷk,f,t = wH
k,f,t−1xf,t, (8)

where φ(rk,t) is defined as φ(rk,t) = ψ′(rk,t)/rk,t
using the first-order derivative ψ′(rk,t) of the contrast func-

tion ψ(rk,t). Also, ŷf,t = [ŷ1,f,t, . . . , ŷK,f,t]
T = Wf,t−1xf,t

is the signal estimated using the demixing matrix of the
previous time frame. The covariance matrix Vk,f,t can be
interpreted as a weighted average of the instantaneous covari-
ance matrix xf,tx

H
f,t by φ(rk,t) = F/r2k,t in the case of the

time-varying Gaussian source model. The weight φ(rk,t) is
designed to decrease as the source activity (7) increases. For
example, Vi,f,t is ideally like a covariance matrix consisting of
sources other than the source k = i. The time-varying source
variance is also updated by maximum-likelihood estimation
by σ̂2

k,τ = r2k,τ/F in each iteration.

B. Demixing matrix update

To update the demixing matrix efficiently, the update rule,
called the iterative projection (IP) [6], has been proposed.
IP iteratively minimizes the objective function (5) for the
demixing vector wk,f,t(∀k) using (9)–(11) at each time frame.

Wf,t ←Wf,t−1, (9)

wk,f,t ← (Wf,tVk,f,t)
−1ek, (10)

wk,f,t ←
wk,f,t√

wH
k,f,tVk,f,twk,f,t

, (11)

where ek ∈ CK is a K-dimensional unit vector whose kth
component should be 1 and all the other components should
be 0. IP has no parameters such as step size, and each step
can be calculated in a closed form.

IV. PROPOSED METHOD

In conventional online AuxIVA, the signal statistics, repre-
sented by Vk,f,t, is computed as a weighted covariance matrix
of the observed signal xf,t using a scalar forgetting factor. In
contrast, this study reformulates the demixing matrix update
as a multiplicative update algorithm, which enables source-
dependent control of the forgetting factors by representing
the signal statistics as a weighted covariance matrix of the
separated signal ŷf,t, rather than the observed signal xf,t.

A. Introducing multiplicative update into online AuxIVA

Previous studies [16] have formulated the demixing matrix
update as a multiplicative update algorithm in batch AuxIVA.
We extend this approach to the online AuxIVA. Here we
consider updating the demixing matrix Wf,t by multiplying
the previous demixing matrix Wf,t−1 and the update matrix
Zf,t = [z1,f,t, . . . ,zK,f,t]

H ∈ CK×K as follows:

Wf,t = Zf,tWf,t−1. (12)

Then, multiplying Wf,t−1 from the left and WH
f,t−1 from the

right to (6), we obtain

Wf,t−1Vk,f,tW
H
f,t−1 = λWf,t−1Vk,f,t−1W

H
f,t−1

+ (1− λ)φ(rk,t)Wf,t−1xf,tx
H
f,tW

H
f,t−1.

(13)

Furthermore, by setting Ṽk,f,t =Wf,t−1Vk,f,tW
H
f,t−1 and us-

ing (12), we obtain the update rule for the weighted covariance
matrix in online AuxIVA with multiplicative update as follows.

Ṽk,f,t = λZf,t−1Ṽk,f,t−1Z
H
f,t−1 + (1− λ)φ(rk,t)ŷf,tŷ

H
f,t.
(14)

Next, we derive the update rule for the update matrix Zf,t.
By multiplying (10) and (11) by W−H

f,t−1 from the left, we
obtain

W−H
f,t−1wk,f,t ← (Wf,tVk,f,tW

H
f,t−1)

−1ek, (15)

W−H
f,t−1wk,f,t ←

W−H
f,t−1wk,f,t√

wH
k,f,tVk,f,twk,f,t

. (16)
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From (12), since wH
k,f,t = zH

k,f,tWf,t−1, it follows that

zk,f,t ← (Zf,tṼk,f,t)
−1ek, (17)

zk,f,t ←
zk,f,t√

zH
k,f,tṼk,f,tzk,f,t

, (18)

where Zf,t is initialized by the identity matrix I at each f, t
before applying (17) and (18).

B. Source-dependent forgetting factor
From (14), in online AuxIVA with multiplicative update,

the signal statistics are expressed as the weighted covariance
matrix of the separated signal. Since the source signals can be
assumed to be statistically independent, the weighted covari-
ance matrix of the separated signal is ideally expected to be
a diagonal matrix. Based on this consideration, we introduce
a diagonal forgetting factor matrix such as

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λK

 , (19)

where λk represents the forgetting factor for the kth source.
One way to introduce this source-dependent forgetting fac-

tor into the update rule (14) is as follows, ensuring that the
quadratic form is preserved.

Ṽk,f,t = Λ
1
2Zf,t−1Ṽk,f,t−1Z

H
f,t−1Λ

1
2

+ φ(rk,t)(I − Λ)
1
2 ŷf,tŷ

H
f,t(I − Λ)

1
2 , (20)

where the square root for a diagonal matrix is taken element-
wise, applying the square root to each diagonal entry. Note
that if the source-dependent forgetting factors are all the same
(λ1 = λ2 = · · · = λK), the update rule is equivalent to that
of the conventional method.

Another way is to apply the source forgetting factor in an
element-wise manner. We observe that the first term in (20)
can also be expressed as

Λ
1
2Zf,t−1Ṽk,f,t−1Z

H
f,t−1Λ

1
2 =

(ppT) ◦ (Zf,t−1Ṽk,f,t−1Z
H
f,t−1), (21)

where p =
[√
λ1 . . .

√
λK

]T
and ◦ denotes the element-

wise product of matrices. Thus, the update rule can be for-
mulated using forgetting factors that sum to 1 per element, as
follows.

Ṽk,f,t = (ppT) ◦ (Zf,t−1Ṽk,f,t−1Z
H
f,t−1)

+ φ(rk,t)(1− (ppT)) ◦ (ŷf,tŷ
H
f,t), (22)

where 1 is a matrix whose all elements are 1. However,
preliminary experiments showed that using update rule (22),
the separation performance often became unstable. This is
because (22) is not expressed in a quadratic form, which may
break the positive semidefiniteness of the covariance matrix.
Therefore, in this study, we use (20) as the update rule.
Algorithm 1 shows the process flow of the proposed online
AuxIVA with multiplicative update, where Ni represents the
number of iterations per time frame.

Algorithm 1 Online AuxIVA-IP with multiplicative update.
1: Initialize covariance matrices Vk,f,0 (∀k, f)
2: Initialize demixing matrices Wf,0 (∀f)
3: for t = 1, . . . , T do
4: Wf,t ←Wf,t−1

5: ŷf,t ←Wf,txf,t (∀f)
6: for i = 1, . . . , Ni do
7: for k = 1, . . . ,K do
8: rk,t ←

√∑
f |wH

k,f,txf,t|
9: Ṽk,f,t ← Λ

1
2Zf,t−1Ṽk,f,t−1Z

H
f,t−1Λ

1
2

+φ(rk,t)(I−Λ)
1
2 ŷf,tŷ

H
f,t(I−Λ)

1
2 (∀f)

10: end for
11: Zf,t ← I (∀f)
12: for k = 1, . . . ,K do
13: zk,f,t ← (Zf,tṼk,f,t)

−1ek (∀f)
14: zk,f,t ← zk,f,t√

zH
k,f,tṼk,f,tzk,f,t

(∀f)
15: end for
16: Wf,t ← Zf,tWf,t−1 (∀f)
17: end for
18: end for

V. EXPERIMENT

A. Setup

We carried out numerical experiments to demonstrate the
separation performance of the proposed method. In this study,
the acoustic scene, such as source-microphone configuration,
was fixed throughout the experiments to focus solely on eval-
uating the effectiveness of source-dependent forgetting. We
obtained speech signals from ASJ Japanese Newspaper Article
Sentences Read Speech Corpus (JNAS) [27] and concatenated
them to make each signal 60 s long. All mixture signals
were generated by convolving the impulse responses created
by the gpuRIR simulation toolkit [17], based on the mirror
image method, with the source signals. The reverberation time
was approximately 300ms and the sampling frequency was
16 kHz. Fig. 1 shows the layout of the room. There were
three sources, and only Source 1 moved from the start to the
end point shown in Fig. 1 in 30 s to 2 s. The microphone
array was a three-channel circle arrangement with radius of
2 cm placed at the center of the room. Each microphone was
omnidirectional. Under these conditions, we conducted 100
simulation experiments while randomly selecting speakers.

We considered the following two comparison methods. The
first (Static) was the conventional online AuxIVA method
using fixed forgetting factor. The second (Equal) was the
proposed online AuxIVA with multiplicative update, in which
the source-dependent forgetting factors in the forgetting factor
matrix Λ were all varied only in the moving segment as
λ1 = λ2 = λ3. In other words, it is equivalent to varying the
scalar forgetting factor only for the moving segment in the con-
ventional online AuxIVA. The proposed method (Proposed)
also varied the forgetting factor corresponding to Source 1
while it was moving. In this experiment, the moving segment
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Fig. 1. Simulated room layout. Source 1 continuously moves in 30s to 2s.
The microphone array and source 2 and 3 are fixed.

TABLE I
PARAMETERS IN THE EXPERIMENT.

Parameter Value

Initial Ṽk,f,0 I × 10−3

Initial Wf,0 I
Sampling frequency 16 kHz
STFT window length 4096 (256ms)
STFT window shift 2048 (128ms)

and the index ℓ corresponding to Source 1 were given as ora-
cle. The index ℓ were obtained by performing online AuxIVA
with fixed forgetting factor, and then mapping the separated
sources to each source using the Signal-to-Interference Ratio
(SIR). The forgetting factors before Source 1 moved were
λ = 0.98 for Static and Equal, and λ1 = λ2 = λ3 = 0.98
for Proposed. In other words, before Source 1 movement
(before 30 s), Static, Equal, and Proposed are all equivalent to
each other. This setting was determined based on preliminary
experiments, which showed that λ = 0.98 provided the best
performance for stationary sources. In the moving segment, the
forgetting factor was set to λ = 0.90, 0.80, 0.50 in Equal and
λℓ = 0.90, 0.80, 0.50 in Proposed, where λℓ is the forgetting
factor corresponding to Source 1. Henceforth, we denote the
forgetting factor in moving segment as λ̃. Other parameters
are shown in Table I.

We evaluated the separation performance in terms of
the scale-invariant signal-to-distortion ratio improvement (SI-
SDRi) [18]. The scale of the separated signal yk,f,t was
restored by projection back [19] onto the first microphone.

B. Result

Table II shows the average SI-SDRi after Source 1 moved
(after 30 s) in the simulation experiment. This reveals that the
proposed method with the source-dependent forgetting factor
control improves the overall separation performance compared
to the conventional method. When the forgetting factor of the
moving segment λ̃ = 0.50, the proposed method showed the
best separation performance among all the methods.

Boxplot of SI-SDRi after the moving segment are shown
in Fig. 2. From this, the separation performance of Source 1
corresponding to the moving source is greatly improved,
especially when λ̃ = 0.50. The covariance matrix Ṽℓ,f,t corre-

TABLE II
MEAN SI-SDRI [dB] IN THE SIMULATION EXPERIMENTS.

Static Equal Proposed

λ̃ 0.90 0.80 0.50 0.90 0.80 0.50

Source 1 2.79 3.99 4.51 5.27 4.14 6.32 6.53
Source 2 4.12 5.25 5.20 5.67 5.11 6.96 7.38
Source 3 5.37 6.66 6.36 5.57 6.29 6.77 5.97

Static
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0.50 0.80 0.90

Static Equal Proposed

Source 3

Fig. 2. Boxplot of SI-SDRi [dB] for each method.

sponding to Source 1 is weighted by (7) and should therefore
only contain statistics for Sources 2 and 3, the fixed sources,
ideally. Thus, the covariance matrix Ṽℓ,f,t does not need to
be forgotten. However, the conventional method adjusts the
signal statistics of all sources with a scalar weight, which may
result in forgetting the signal statistics that does not need to
be forgotten, and may degrade the separation performance.
On the other hand, by controlling only the forgetting factor λℓ
corresponding to Source 1, the proposed method can forget
only the signals statistics that should be forgotten, which is
assumed to have contributed to the separation performance
improvement.

In order to compare Equal and Proposed, Fig. 3 shows the
scatter plot of SI-SDRi after the Source 1 movement when λ̃ =
0.50. The majority of the points lie above the diagonal, which
indicates that Proposed method outperforms Equal. In detail,
the separation performance improved by 75/100 for Source 1,
73/100 for Source 2, and 65/100 for Source 3.

Fig. 4 shows the temporal variation of SI-SDRi for each
source in one simulation. Before Source 1 moved, Proposed
is equivalent to Static when the source-dependent forgetting
factors λk (∀k) are all the same value. On the other hand,
after Source 1 have moved, Proposed shows better separation
performance than others, suggesting improved performance in
dynamic environments such as when sound sources move.

These results confirm the effectiveness of the proposed
source-dependent forgetting factor control. Although the
source index and moving segment were given as oracle in
this experiments, we also evaluated the method’s robustness.
Even with a 1 s delay in the moving segment annotation,
the proposed method outperformed conventional methods,
indicating a certain degree of robustness to timing errors.

469



0 10

0

5

10
Pr

op
os

ed

Source 1

0 10
Equal

Source 2

0 10

Source 3

Fig. 3. Scatterplot of SI-SDRi [dB] for Equal and Proposed when λ̃ = 0.50.
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Fig. 4. Temporal variation of SI-SDRi [dB] for each method when λ̃ = 0.50.
The gray shading indicates the moving segment of Source 1.

VI. CONCLUSION

In this paper, we introduced a multiplicative update for-
mulation for online AuxIVA, which enables source-dependent
forgetting factor control. The proposed method allows source-
wise adjustment of signal statistics, offering more flexibility
than conventional methods. Simulation experiments demon-
strated that the proposed method significantly improves sepa-
ration performance, particularly in dynamic environments such
as when sound sources move. In this experiment, the moving
segment and the index ℓ corresponding to the moving source
were given as oracle, but in the future, we will explore adaptive
estimation of the forgetting factor to dynamically adjust to
source movement without prior knowledge.
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