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Abstract—Real-time blind source separation is an important
technique for many real-world applications. One of the repre-
sentative methods is an online extension of independent vector
analysis (IVA), which is called online IVA (OIVA). However,
the optimization problem of OIVA has not been theoretically
discussed thus far. In this paper, we introduce a framewise
probabilistic generative model to formulate OIVA on the basis
of statistical independence and derive the update rules. The the-
oretical background of the conventional OIVA is also derived as
the limiting case of the proposed OIVA. Simulation experiments
demonstrate that the proposed OIVA achieves faster convergence
in separation performance than the conventional OIVA.

Index Terms—independent vector analysis, online independent
vector analysis, online blind source separation

I. INTRODUCTION

Multichannel blind source separation (BSS) is a technique
to separate each source signal from mixtures recorded by a mi-
crophone array without any prior information [1]. Under (over-
)determined conditions, where the number of microphones is
greater than or equal to that of sources, a major approach
is to estimate the demixing matrix so that the separated
signals become statistically independent of each other. One
of the commonly used methods based on this approach is
independent vector analysis (IVA) [2], [3]. By introducing
a model that considers higher-order dependencies between
frequency components, IVA can achieve high source separa-
tion performance. For fast and numerically stable estimation,
auxiliary-function-based IVA (AuxIVA) has been proposed [4].
AuxIVA is based on the auxiliary function method [5] and can
be performed without hyperparameter tuning unlike in [2], [3].

In real-world applications such as hearing aids and robot
dialogue systems, real-time BSS methods are necessary for
smooth communication. As one of such methods, an online
extension of AuxIVA, which is called online AuxIVA (OIVA),
has been proposed [6], [7]. In OIVA, the update algorithm of
AuxIVA is extended to process the observed signal online, i.e.,
in a frame-by-frame manner. It has been experimentally shown
that OIVA performs well in online scenarios. However, in the
conventional OIVAs, the update rule of AuxIVA is heuristi-
cally extended for online implementation, and a corresponding
optimization problem has not been revealed.
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In this paper, we introduce a framewise probabilistic gener-
ative model to formulate OIVA as an optimization problem
based on statistical independence. The proposed framewise
formulation can also represent offline BSS problems by ad-
justing a hyperparameter, making it possible to represent both
offline and online BSS problems. We also show that the update
rules of the proposed OIVAs become identical to those of the
conventional OIVAs in a limiting case where an infinitely long
time has passed. Moreover, our proposed method executes
some suitable estimation in situations where the number of
available frames is small, such as at the start of observation.
We conducted two experiments: (i) all sources were stationary
and (ii) a source moved. Through these experiments, we con-
firmed that the proposed OIVAs achieve faster convergence in
source separation performance than the conventional OIVAs.

II. RELATED WORKS

A. IVA

Let xij = (xij1, ..., xijM )T ∈ CM , sij =
(sij1, ..., sijN )T ∈ CN , and yij = (yij1, ..., yijN )T ∈ CN

be the short-time Fourier transforms (STFTs) of the ob-
served, source, and separated signals, respectively. Here, i ∈
{1, ..., I}, j ∈ {1, ..., J}, m ∈ {1, ...,M}, and n ∈ {1, ..., N}
denote the indices of the frequency bins, time frames, mi-
crophones, and sources, respectively, and T represents the
transpose. With the assumptions that each source is a point
source and the room reverberation is sufficiently shorter than
the window size of an STFT, the following instantaneous
mixing in the time-frequency domain approximately holds:

xij = Aisij , (1)

where Ai = (ai1, ...,aiN ) ∈ CM×N is the mixing matrix,
which represents the time-invariant spatial characteristics of
the mixing system, and ain is the steering vector of the nth
source. If M = N and Ai is regular, there exists the inverse
of the mixing matrix, Wi = (wi1, ...,wiN )H = A−1

i , where
H represents the Hermitian transpose and Wi is called the
demixing matrix. By using Wi, we can obtain the separated
signals as

yij = Wixij . (2)
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On the basis of statistical independence, the objective variable
Wi is estimated by minimizing the following negative log-
likelihood:

− log p({xijm}I,J,Mi,j,m )

=−
∑
n

log p({yijn}I,Ji,j )− J
∑
i

log |detWi|2, (3)

where {·}I,J,Mi,j,m denotes {{{·}Ii=1}Jj=1}Mm=1 for simplicity.
In IVA, the separated signals are assumed to have a higher-

order correlation between frequency components and to be
independently and identically distributed across time frames.
In this paper, we assume that the separated signals follow the
following spherical multivariate Laplace distribution with a
mean of 0I and a scale matrix of EI as

p({yijn}Ii ;0I ,EI) ∝ exp

(
−
√∑

i

|yijn|2
)
, (4)

where 0I ∈ CI is the zero vector and EI ∈ CI×I is the
identity matrix. By substituting (4) and yijn = wH

inxij into
(3), we can obtain the cost function of IVA as

LIVA =
∑
n

J∑
j=1

√∑
i

|wH
inxij |2 − J

∑
i

log |detWi|2. (5)

It is difficult to directly minimize LIVA with respect to Wi.
In AuxIVA [4], an iterative update rule is derived on the basis
of the auxiliary function method [5] as follows. By utilizing
the relationship between a concave function and its tangent
line,

√
x ≤ x/2

√
c +
√
c/2 (∀x, c ∈ R≥0), we consider the

following auxiliary function of LIVA:

L̃IVA =
∑
n

J∑
j=1

(∑
i |wH

inxij |2

2rjn
+

rjn
2

)
− J

∑
i

log |detWi|2

=J

(∑
i,n

wH
inDinwin −

∑
i

log |detWi|2
)

+ const.,

(6)

where const. denotes the term independent of win, rjn is
a nonnegative auxiliary variable, and Din is a weighted
covariance matrix of the observed signal and defined as

Din =
1

J

J∑
j=1

xijx
H
ij

2rjn
. (7)

Here, L̃IVA = LIVA holds if and only if

rjn =

√∑
i

|wH
inxij |2 (8)

holds. We can minimize LIVA by iteratively repeating the
following two processes:

• Minimizing L̃IVA with respect to Wi

• Updating rjn and Din using (8) and (7), respectively

For minimizing the auxiliary function L̃IVA with respect to the
demixing matrix Wi, two methods have been proposed and
are commonly used: iterative projection (IP) [4] and iterative
source steering (ISS) [8]. The update rule using IP is expressed
as

uin ← (WiDin)
−1en, (9)

win ← uin/
√
uH
inDinuin, (10)

where en denotes the nth column vector of EN . On the other
hand, the update rule using ISS is expressed as

vinn′ ←

{
wH

in′Din′win

wH
inDin′win

, (if n′ ̸= n)

1− (wH
inDinwin)

− 1
2 , (if n′ = n)

(11)

Wi ←Wi − (vin1, ..., vinN )TwH
in. (12)

Both update rules are sequentially executed for n = 1, ..., N .
It is guaranteed that both the update rules based on IP and
ISS monotonically nonincrease the cost function LIVA. Note
that in [4], the probabilistic generative model of the separated
signal is generalized for a super-Gaussian distribution that
includes the spherical multivariate Laplace distribution, and
we can generalize the subsequent discussion in a similar way.

In IVA, the scale of yijn can vary across the frequency bins.
To fix the scales of yijn among all the frequency bins, the
projection back method [9] is applied to yijn after estimating
Wi.

B. Online AuxIVA

When we simply apply offline AuxIVA, the auxiliary vari-
ables are updated each time the demixing matrix is updated;
thus, the weighted covariance matrix of the observed signal
also needs to be recalculated. As a result, the computational
cost for updating the weighted covariance matrix of the
observed signal increases with the length of the observed
signal. In [6], [7], to reduce the computational cost, when the
kth frame of the observed signal is obtained, the approximate
weighted covariance matrix of the observed signal D̂

(k)
in is

updated in an autoregressive manner as

D̂
(k)
in ← αD̂

(k−1)
in + (1− α)

xikx
H
ik

2rkn
, (13)

where α ∈ [0, 1) denotes the forgetting factor, and the upper
right script (k) indicates the parameter estimated in the kth
frame. Here, D̂

(0)
in is initialized as εEN with the stability

parameter ε, which is sufficiently small. In (13), when we
update D̂

(k)
in , the auxiliary variables rjn (j = 1, ..., k− 1) are

fixed and only rkn is updated. By replacing the updates of
Din with D̂

(k)
in in (9)–(12), we can derive both the update

rules of OIVA using IP and ISS. In addition, since spatial
characteristics are not expected to change abruptly, we utilize
the estimate of the demixing matrix from the (k − 1)th
frame as the initial value for the demixing matrix in the kth
frame, reducing the number of iterations for D̂

(k)
in and Wi.
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Furthermore, in OIVA using IP, the following fast algorithm
based on the Sherman–Morrison formula is proposed [6]:

ηin ← Û
(k−1)
in xik, (14)

Û
(k)
in ←

1

α

(
Û

(k−1)
in − ηinη

H
in

xH
ikηin + 2rknα/(1− α)

)
, (15)

uin ← Û
(k)
in ain/

√
aH
inÛ

(k)
in ain, (16)

ζin ← uin −win, (17)

Wi ←Wi + enζ
H
in, (18)

Ai ←
(
EN −

ainζ
H
in

1 + ζH
inain

)
Ai, (19)

where Û
(0)
in is initialized as ε−1EN .

III. PROPOSED METHOD

A. Motivation

The update rule of the conventional OIVA is heuristically
derived from that of offline AuxIVA, and the corresponding
optimization problem has not been discussed. Although the
conventional OIVA has been experimentally shown to perform
well, its theoretical background remains ambiguous.

In this paper, to discuss the theoretical background of OIVA,
we introduce a framewise probabilistic generative model. In
offline IVA, the separated signals are assumed to be indepen-
dently and identically distributed across time frames; thus, the
first and last frames of an observed signal are treated with
equal weight. In an online scenario, new frames of an observed
signal arrive continuously, and we must consider a very long
observed signal. In this case, it is unrealistic to assume that
the spatial characteristics are stationary. If we simply apply
offline IVA to such a long observed signal, its early frames
can affect the separation performance in the current frame.
Therefore, it is desirable to treat the recent frames with larger
weights than the early frames. To achieve this, we design a
probabilistic generative model that changes with each frame.

Then, for maximum likelihood estimation based on the
proposed framewise probabilistic generative model, we derive
the update rules suitable for online scenarios using IP and
ISS, and also discuss the relationship between the proposed
and conventional OIVAs.

B. Framewise probabilistic generative model

When the observed signal up to the kth frame is obtained,
(3) is represented as

−
∑
n

log p({yijn}I,ki,j )− k
∑
i

log |detWi|2. (20)

To weight each frame of the observed signal, we modify the
scale matrix of the spherical multivariate Laplace distribution
with a frame-dependent weighted identity matrix as

p
(
{yijn}Ii ;0I ,

(
ρ
(k)
j

)−2
EI

)
∝ exp

(
−ρ(k)j

√∑
i

|yijn|2
)
,

(21)

where ρ
(k)
j ≥ 0 is a weight parameter of the jth frame when

the observed signal up to the kth frame is obtained. Here,
the autoregressive update rule (13) corresponds to exponential
smoothing. Then, we set ρ(k)j to be

ρ
(k)
j ∝ βk−j , (22)

where β ∈ [0, 1) denotes the forgetting factor for the proposed
model. Additionally, to determine the scale of the weight
parameter ρ(k)j , we impose the following constraint:

1

k

k∑
j=1

ρ
(k)
j = 1. (23)

From (22) and (23), we obtain

ρ
(k)
j = k

1− β

1− βk
βk−j . (24)

By substituting (21) into (20), the proposed cost function of
IVA at the kth frame L(k)

IVA is defined as

L(k)
IVA =

k∑
j=1

ρ
(k)
j

∑
n

√∑
i

|wH
inxij |2 − k

∑
i

log |detWi|2.

(25)

Note that since the proposed cost function L(k)
IVA converges to

the cost function of offline IVA LIVA when k = J and β → 1,
it can comprehensively represent both offline and online IVAs.

C. Update rules for proposed OIVA

Next, we derive the update rule for the proposed cost
function L(k)

IVA. By utilizing the relationship between a con-
cave function and its tangent line, we consider the following
auxiliary function of L(k)

IVA:

L̃(k)
IVA =

k∑
j=1

ρ
(k)
j

∑
n

(∑
i |wH

inxij |2

2rjn
+

rjn
2

)
− k

∑
i

log |detWi|2

=k

(∑
i,n

wH
inΦ

(k)
in win −

∑
i

log |detWi|2
)

+ const.,

(26)

where Φ
(k)
in is a frame-dependent-weighted covariance matrix

of the observed signal and defined as

Φ
(k)
in =

1

k

k∑
j=1

ρ
(k)
j

xijx
H
ij

2rjn
=

1− β

1− βk

k∑
j=1

βk−j
xijx

H
ij

2rjn
, (27)

and L̃(k)
IVA = L(k)

IVA holds if and only if (8) holds. We can
minimize L(k)

IVA by iteratively repeating the following two
processes:

• Minimizing L̃(k)
IVA with respect to Wi

• Updating rjn and Φ
(k)
in using (8) and (27), respectively
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For minimizing the auxiliary function L̃(k)
IVA with respect to

the demixing matrix Wi, both IP and ISS can be applied. It
is guaranteed that both the update rules based on IP and ISS
monotonically nonincrease the cost function L(k)

IVA.
For real-time execution, the computational cost at each

frame must be reduced. Unfortunately, the auxiliary variable
and the frame-dependent-weighted covariance matrix need to
be recalculated each time that the demixing matrix is updated,
and the computational cost increases as the number of frames
k increases. Thus, we first transform (27) as

Φ
(k)
in =

1− β

1− βk

xikx
H
ik

2rkn

+
β − βk

1− βk

(
1− β

1− βk−1

k−1∑
j=1

β(k−1)−j
xijx

H
ij

2rjn

)
. (28)

To reduce the computational cost, we fix the auxiliary variables
rjn (j = 1, ..., (k − 1)), resulting in the representation of
the second term of the right-hand side of (28) using the
estimate of the (k−1)th frame-dependent-weighted covariance
matrix Φ

(k−1)
in , Φ̂(k−1)

in . As a result, the update of Φ̂
(k)
in can

be expressed as

Φ̂
(k)
in =

1− β

1− βk

xikx
H
ik

2rkn
+

β − βk

1− βk
Φ̂

(k−1)
in , (29)

where rkn =
√∑

i |wH
inxik|2 and Φ̂

(1)
in is set to

xi1x
H
i1/2r1n+εEN for stability. Finally, the update rule of the

proposed OIVA using IP and the Sherman–Morrison formula
is expressed as

νin ← Ψ̂
(k−1)
in xik, (30)

Ψ̂
(k)
in ←

1− βk

β − βk

(
Ψ̂

(k−1)
in − νinν

H
in

xH
ikνin + 2rkn(β−βk)

(1−β)

)
, (31)

ξin ← Ψ̂
(k)
in ain/

√
aH
inΨ̂

(k)
in ain, (32)

φin ← ξin −win, (33)

Wi ←Wi + enφ
H
in, (34)

Ai ←
(
EN −

ainφ
H
in

1 +φH
inain

)
Ai, (35)

where Ψ̂
(1)
in is set to ε−1EN −xi1x

H
i1/(2r1nε

2+εxH
i1xi1) for

stability. On the other hand, the update rule of the proposed
OIVA using ISS is expressed as

qinn′ ←


wH

in′ Φ̂
(k)

in′win

wH
inΦ̂

(k)

in′win

, (if n′ ̸= n)

1− (wH
inΦ̂

(k)
in win)

− 1
2 , (if n′ = n)

(36)

Wi ←Wi − (qin1, ..., qinN )TwH
in. (37)

D. Relationship between proposed and conventional OIVAs

When α = β (< 1) and k → ∞, it can be seen that
the update rule of the frame-dependent-weighted covariance
matrix of the observed signal (29) converges to the update rule
of the weighted covariance matrix in the conventional OIVAs
(7). Therefore, the conventional OIVAs can be interpreted as

= 300 ms

2

3

3-ch circular
microphone array

with radius of 2 cm

5
m

7 m

1

3’

Height:
Src. positions 1-3, 3’ … 1.5 m
Mic. array … 1 m 

Fig. 1. Room layout for simulating impulse response. In experiment (i),
all sources are stationary at positions 1–3. In experiment (ii), two sources at
positions 1 and 2 are stationary and one source at position 3 moves to position
3’ between 10 and 20 s after start.

the limiting case of the proposed OIVAs where an infinitely
long time has passed. On the other hand, when k is small, the
proposed OIVAs assign less weight to the previous estimate
of the weighted covariance matrix of the observed signal
than the conventional OIVAs. In such situations, since it is
difficult to obtain this weighted covariance matrix accurately,
the proposed OIVAs are expected to quickly capture the
spatial characteristics by assigning a large weight to the latest
observed signal.

IV. EXPERIMENTS

A. Experimental conditions

We conducted two simulation experiments: (i) a case where
all sources are stationary and (ii) a case where one of
the sources moves. We used speech signals from the JNAS
dataset [10] and chose 10 sets of three speakers. For each
speaker, we created a dry source by concatenating speech
signals with a total length of 60 s. All sources were convolved
with the room impulse response generated using the image
source method implemented in Pyroomacoustics [11] and then
mixed so that each convolved signal had equal power. Fig. 1
shows the room layout for simulation. The reverberation time
T60 was set to 300 ms. In experiment (i), all sources remained
stationary at positions 1–3 shown in Fig. 1. In experiment
(ii), two sources were stationary at positions 1 and 2, and one
source moved at a constant speed from position 3 to position 3’
between 10 and 20 s after the start. The sampling rate was
16 kHz.

We compared four methods: Conv-IP and Conv-ISS are the
conventional OIVAs using IP and ISS, respectively; Prop-
IP and Prop-ISS are the proposed OIVAs using IP and ISS,
respectively. For both experiments, we set the forgetting pa-
rameters α and β to 0.99, the number of iterations per frame
to 2, and a small constant for stability ε to 10−3. STFT
was performed using a 64-ms-long Hamming window with
a shift length of 32 ms. The implementation was carried out
using Python on a PC equipped with Intel Core i9-13900KF
CPU and 128 GB of RAM. Only the CPU was used for
computations.

To evaluate the real-time source separation performance,
we first calculated the segmentwise source-to-distortion ratio
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Fig. 2. Average SDR improvements for each method in experiment (i).

TABLE I
AVERAGE AND MAXIMUM PROCESSING TIMES PER FRAME FOR EACH

METHOD IN EXPERIMENT (I).

Method Conv-IP Conv-ISS Prop-IP Prop-ISS
Ave. [ms] 1.86 2.00 1.86 2.01
Max. [ms] 2.29 4.11 3.71 3.99

(SDR) [12] improvement for each source using the signals
between (l − 1) s and (l + 1) s (l = 1, ..., 59). In experiment
(i), we used the average SDR improvement across all 30
sources. In experiment (ii), we used the average SDR improve-
ment across 20 stationary sources and that across 10 moving
sources. Additionally, we calculated the average and maximum
processing times per frame for each method in experiment (i).

B. Online source separation performance

Fig. 2 shows the average SDR improvements for each
method in experiment (i). We confirmed that the separation
performance of the proposed methods converges faster than
that of the conventional methods. Furthermore, after sufficient
time had passed, the separation performance of all the methods
became almost the same. Table 1 shows the average and max-
imum processing times per frame in experiment (i). Since the
maximum processing time of all the methods was significantly
lower than the frame length (32 ms), it was confirmed that
all the methods can operate in real time. Additionally, when
using the same demixing matrix estimation method, there was
almost no difference in the average processing time between
the conventional and proposed methods. These results indicate
that the proposed methods achieve faster convergence than the
conventional methods without any performance degradation.

Fig. 3 shows the average SDR improvement of stationary
sources and that of moving sources for each method in
experiment (ii). As shown in this result, we confirmed that both
the conventional and proposed methods perform well even in
situations where a moving source exists.

V. CONCLUSION

In this paper, we proposed an optimization problem by
introducing a framewise probabilistic generative model for
OIVA and derived the update rule. The theoretical background
of the conventional OIVA is also derived as the limiting case of
the proposed OIVA. Through experiments, we confirmed that
the separation performance of the proposed methods converges
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Fig. 3. Average SDR improvements of stationary sources (top panel) and
moving sources (bottom panel) for each method in experiment (ii). Gray
shaded area represents time interval in which source at position 3 moved
to position 3’.

faster than that of the conventional methods and that the
proposed methods perform well even in situations where a
moving source exists.
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