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Abstract—Speaker-conditioned target speaker extraction sys-
tems aim to extract the target speaker from a mixture of speakers
by utilizing auxiliary information about the target speaker. Typ-
ically, such systems consist of a speaker embedder network and
a speaker separator network. While self-attention mechanisms
have demonstrated remarkable performance in speech processing
tasks, including target speaker extraction, their high memory
usage and computational complexity pose challenges for real-
time applications. To address these limitations, we integrate
a linear self-attention mechanism into the separator network,
significantly reducing memory and computational costs, and
thereby making the system more suitable for real-time appli-
cations. Furthermore, we evaluate the performance of this linear
self-attention-based speaker extraction system against a system
using memory-efficient self-attention. Experimental results on
two-speaker, three-speaker, and noisy two-speaker mixtures show
that linear self-attention not only improves speaker extraction
performance compared to both traditional and memory-efficient
self-attention but also significantly reduces the real-time factor
and computational cost.

Index Terms—Target speaker extraction, efficient self-
attention, real-time, conformer, TCN

I. INTRODUCTION

In many applications, it is important to extract a target
speaker from overlapping speech recordings in a noisy envi-
ronment. Traditional approaches like blind source separation
(BSS) [1]–[5] can be utilized to first estimate all sources from
the mixture of speakers and then select the target speaker.
As a more direct approach, speaker-conditioned target speaker
extraction algorithms have been proposed, which estimate the
target speaker from the mixture utilizing auxiliary information
about the target speaker [6]–[18]. Commonly used auxil-
iary information includes reference speech [6]–[8], [10]–[12],
video [13], [14], speech activity [15] or directional cues [16],
[17]. In this paper, we focus on single-channel target speaker
extraction utilizing reference speech as auxiliary information.

The Oldenburg Branch for Hearing, Speech and Audio Technology HSA
is funded in the program ≫Vorab≪ by the Lower Saxony Ministry of
Science and Culture (MWK) and the Volkswagen Foundation for its further
development.

Typically, speaker-conditioned target speaker extraction sys-
tems consist of two networks: a speaker embedder network
and a speaker separator network, which are trained either
separately or jointly. The speaker embedder network generates
a speaker embedding from the reference speech of the target
speaker. This speaker embedding guides the separator network
in extracting the target speaker from the mixture. Some
separator networks estimate a time-frequency mask [7]–[9],
while other separator networks directly estimate the target
speaker in the time domain [10]–[12]. Various architectures
have been explored for both networks. For instance, LSTM-
based architectures have been used for the speaker embedder
network in [7], [9], [10], whereas ResNet-based architectures
have been used in [8], [11], [12]. For the separator network,
a convolutional long short-term memory (CNN-LSTM) archi-
tecture has been used in [7], [9], whereas an attention-based
architecture has been in [8], [12], and temporal convolutional
neural network (TCN)-based architectures have been used in
[10], [11].

Recently, self-attention (SA) [19] has received significant
attention for target speaker extraction [8], [12], [13] due to
its ability to capture complex dependencies, support paral-
lel processing, and its flexibility in handling diverse input
features. Despite its impressive performance, traditional SA
often comes with high memory and computational costs [19].
The memory and computational costs of traditional SA scale
quadratically with the length of the mixture signal, making it
resource-intensive and challenging for real-time applications.
To overcome these limitations, various SA variants have been
proposed [20]–[22], which aim to reduce the memory and
computational costs without affecting the performance. Some
of these variants have been successfully applied to speech
enhancement and separation [5], [23], [24]. However, to the
best of our knowledge, the potential benefits of these SA
variants have not been explored specifically for real-time
speaker-conditioned target speaker extraction.

In this paper, we consider a TCN-Conformer-based base-
line system proposed in [12], which utilizes a ResNet-based
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Figure 1. TCN-Conformer system for single-channel target speaker extraction, either using traditional or memory-efficient or linear self-attentions in the
conformer blocks. “Cat” represents the concatenation operation.

speaker embedder network and a TCN-Conformer-based sep-
arator network to perform target speaker extraction in the
time domain (see Fig. 1). The separator network is composed
of TCN and conformer blocks, where each conformer block
utilizes traditional multi-head self-attention (MHSA). Aiming
at reducing both memory and computational costs, we propose
two key modifications. First, we replace the traditional MHSA
in each conformer block with a linear MHSA [21] (resulting in
a linear TCN-Conformer system), which scales linearly with
input length. Second, we explore several system variants by
progressively reducing the total number of parameters by a
factor of 2 (Medium), 4 (Small), and 8 (XSmall). Additionally,
we investigate the effect of a memory-efficient MHSA [22],
which specifically targets memory reduction in the considered
baseline system. Experimental results on both clean and noisy
mixtures show that all causal variants of the proposed linear
TCN-Conformer system significantly improve target speaker
extraction performance compared to both the corresponding
causal baseline system with traditional and memory-efficient
MHSA. Furthermore, the proposed linear TCN-Conformer
systems achieve a substantial reduction in the real-time factor
(RTF) and computational costs, making them more efficient
for real-time application.

II. TARGET SPEAKER EXTRACTION

In this section, we first review the baseline TCN-Conformer-
based system with traditional MHSA [12] and memory-
efficient MHSA [22] in Section II-A, and then discuss the
proposed linear TCN-Conformer system in Section II-B.

A. Baseline TCN-Conformer System

Fig. 1 depicts the separator network of the considered
baseline system, consisting of 4 identical stacks of TCN and
conformer blocks. Each TCN block exploits the local context,
while each conformer block exploits both local and global
context features of the mixture signal. The first TCN block
receives a concatenation of the encoded features obtained
from the multi-scale speech encoder and the target speaker
embedding as input, while the first conformer block receives

the sum of the encoded features and the output from the first
TCN block as input. For the remaining blocks, each TCN
block receives a concatenation of the target speaker embedding
and the output from the previous conformer block as input.
Conversely, each conformer block receives the sum of the
outputs from the previous TCN and conformer blocks as input.

The (traditional) SA mechanism in [19] transforms each
input feature vector yi ∈ Rd with dimension d into three vec-
tors: query (qi ∈ Rdk ), key (ki ∈ Rdk ), and value (vi ∈ Rdv ).
The query and key have the same feature dimension dk, while
dv denotes the feature dimension of the value. The similarity
between the i-th query and the j-th key is computed as
softmax

(
qT
i kj

)
. SA focuses on finding similarities between

all pairs of positions, where for n positions, the queries,
keys and values are represented as matrices Q ∈ Rn×dk ,
K ∈ Rn×dk , and V ∈ Rn×dv , respectively. The output of
a traditional SA layer is given as:

Att(Q,K,V) = σ
(
QKT

)
V, (1)

where σ represents the softmax operation. Since traditional SA
issues a separate query for each position, it exhibits overall
memory and computational costs of O(n2). MHSA consists
of the concatenation of several parallel SA layers.

In [22], a memory-efficient MHSA mechanism was pro-
posed, which preserves closely the same mathematical equiv-
alence of traditional MHSA while optimizing memory usage.
Unlike traditional MHSA, which stores the full attention
matrix in eq (1), memory-efficient MHSA dynamically recom-
putes the attention matrix during backpropagation instead of
retaining it in memory, which significantly reduces memory
consumption while maintaining the accuracy and functionality
of traditional MHSA.

B. Proposed Linear TCN-Conformer System

The proposed linear TCN-Conformer system uses the same
block diagram as in Fig. 1, where the traditional MHSA
in each conformer block is replaced with a linear MHSA
[21] to reduce both memory and computational costs. Similar
to traditional SA, linear SA also transforms input features
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into queries, keys, and values through linear transformations.
However, instead of treating the keys as n feature vectors in
Rdk , linear SA interprets them as dk feature maps [21]. Each
feature map acts as a weight across all positions and aggregates
the corresponding values through a weighted sum. The output
of this linear SA layer is given as:

Attlin(Q,K,V) = σq (Q)
(
σk(K)TV

)
, (2)

where σq and σk represent row-wise and column-wise softmax
operations, respectively. Although these softmax operations on
the query and key matrices (Q, K) are not the same as per-
forming a single softmax on QKT as in (1), they may closely
approximate the overall effect. The property of σ(QKT ) is
that each row sums to 1, representing a normalized attention
distribution over all positions. The matrix σq(Q)σk(K)T

retains this property. Therefore, the linear SA mechanism in
eq (2) offers a close approximation to traditional SA in eq
(1) while significantly reducing memory and computational
requirements, with both scaling linearly with input length.

III. EXPERIMENTS

In this section, we discuss the datasets for training, valida-
tion, and testing, the used (hyper)parameters, and the training
procedure of the considered baseline and proposed target
speaker extraction systems.

A. Datasets

Similarly to [12], we have simulated three different types
of mixtures at a sampling rate of 16 kHz: 2 speakers (2-
mix), 3 speakers (3-mix), and 2 speakers with noise (noisy-
mix) from the WSJ0 dataset [25] and the WHAM dataset
[26]. For the training and validation sets, we have used the
subset si tr s from the WSJ0 dataset, while we have used the
subsets si dt 05 and si et 05 to create the test set. The test
set contains entirely different speakers than the training and
validation sets. To generate the 2-mix dataset, two different
speakers are randomly selected and mixed at an SNR between
0 and 5 dB, where the first selected speaker is considered
the target speaker and the second speaker is considered the
interfering speaker. A different utterance of the target speaker
is chosen as the reference speech to compute the speaker
embedding. The 3-mix dataset is generated using a similar
procedure, where two interfering speakers with equal power
are mixed with the target speaker, also at an SNR between 0
and 5 dB. For the noisy-mix dataset, both the target and the
interfering speaker are selected from the WSJ0 dataset, while
the noise samples are selected from the training, validation,
and test splits of the WHAM dataset. In total, the training
and validation sets contain 47, 926 and 12, 792 utterances,
respectively, while the test set contains 7, 478 utterances for
all 2-mix, 3-mix, and noisy-mix.

B. Training settings

Similarly to the baseline system [12], the speaker embedder
network consists of 3 residual blocks. Each residual block
of the embedder network consists of two 1-D CNN layers,

Table I
(HYPER)PARAMETER SETTINGS FOR THE DIFFERENT VARIANTS OF THE

BASELINE AND PROPOSED SYSTEMS.

Variants Number of filters
(speech encoder)

Attention-
dimension

Number of filters
(DDS-CNN)

Large 256 256 512
Medium 1024 64 920

Small 512 64 512
XSmall 256 64 256

followed by a batch-normalization and a PReLU activation
function. A residual connection is employed between the input
and the second CNN with batch normalization. The dimension-
ality of the speaker embedding is fixed to 256. The separator
network consists of a multi-scale encoder and decoder having
3 different filter lengths (2.5 ms, 10 ms, and 20 ms). Each
TCN block of the separator network consists of two 1-D CNN
layers, two PReLU activations with layer normalization, and
one dilated depth-wise separable convolutional layer (DDS-
CNN). Each conformer block [27] consists of four different
blocks: two feed-forward, one MHSA, and a CNN arranged
in the same structure as in [12].

We train the baseline system with traditional and memory-
efficient MHSA, and the proposed linear TCN-Conformer
system in causal mode, ensuring that all systems have a similar
number of parameters as the baseline system with traditional
MHSA in non-causal mode. For all systems, we consider
different variants with a different number of parameters (see
Table I). A large variant with about 12.8 M parameters, a
medium variant (factor 2 reduction), a small variant (factor 4
reduction), and an extra small variant (factor 8 reduction). To
achieve the different variants, we varied the number of filters
in the speech encoder, the dimension of the MHSA in the
conformer block, and the number of filters in DDS-CNN layers
(see Table I), while keeping all other (hyper)parameters the
same. For each variant, 4 stacks of TCN and conformer blocks
are used in the separator network. All considered systems were
trained using the ADAM optimizer [28] with a learning rate
of 0.001 using a weighted combination of the multi-scale SI-
SNR loss and the cross-entropy loss [11] for all mixture types
together. All systems were trained considering 4-s segments of
audio signals for 150 epochs with an early stopping criterion
of 6 epochs.

IV. RESULTS AND DISCUSSION

The performance of all considered systems is evaluated
separately on the 2-mix, 3-mix, and noisy-mix test sets1.
Besides using the scale-invariant signal-to-distortion ratio (SI-
SDR) [29] as performance metric for speaker extraction, we
have also considered the computational and memory costs
measured by the total number of multiplications and additions
(MACs) per seconds, the real-time factor (RTF), and the total
number of parameters (#Param). MACs and #Param have been
computed using the Torchinfo library of PyTorch. The RTF

1Audio examples: https://github.com/raginisinha/LinearTSEexamples
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Table II
MEAN SI-SDR (DB) (↑), REAL-TIME FACTOR (RTF) (↓), TOTAL NUMBER OF MACS PER SECONDS (↓), AND NUMBER OF PARAMETERS FOR THE

DIFFERENT VARIANTS OF THE BASELINE SYSTEMS (NON-CAUSAL AND CAUSAL MODES) WITH TRADITIONAL MHSA, THE BASELINE SYSTEM WITH
MEMORY-EFFICIENT MHSA (CAUSAL MODE), AND THE PROPOSED EFFICIENT TCN-CONFORMER SYSTEMS (CAUSAL MODE). ALL SYSTEMS ARE

TRAINED WITH ALL TYPES OF MIXTURES (2-MIX, 3-MIX, AND NOISY-MIX) TOGETHER. ↑ INDICATES HIGHER IS BETTER, WHILE ↓ INDICATES LOWER IS
BETTER.

Variants Systems MHSA Mode 2-mix 3-mix noisy-mix RTF MACs #Param
- Input mixture - - 2.5 -1.3 -3.2 - - -

Baseline system [12] Traditional Non-causal 17.5 10.7 9.3 - 17.92 G 12.8 M
Baseline system [12] Traditional Causal 12.6 7.1 6.0 2.31 16.72 G 12.6 M
Baseline system [12] Memory-efficient Causal 11.8 6.6 5.8 2.00 16.66 G 12.3 M
Proposed system Linear Causal 12.9 7.3 6.7 1.60 14.05 G 12.3 M
Baseline system Traditional Non-causal 15.8 9.5 8.7 - 15.24 G 6.4 M
Baseline system Traditional Causal 11.2 6.4 6.1 1.83 13.09 G 6.4 M
Baseline system Memory-efficient Causal 11.0 6.1 5.7 1.62 13.00 G 6.3 M
Proposed system Linear Causal 11.7 6.6 5.9 0.23 9.27 G 6.3 M
Baseline system Traditional Non-causal 14.6 8.6 8.1 - 11.74 G 3.1 M
Baseline system Traditional Causal 10.9 6.3 5.9 1.41 9.27 G 3.1 M
Baseline system Memory-efficient Causal 10.7 6.0 5.7 1.07 9.19 G 3.0 M
Proposed system Linear Causal 11.4 6.4 6.1 0.12 5.03 G 3.0 M
Baseline system Traditional Non-causal 14.0 8.0 7.9 - 8.92 G 1.7 M
Baseline system Traditional Causal 10.6 6.1 5.2 0.90 7.71 G 1.7 M
Baseline system Memory-efficient Causal 10.2 6.0 5.2 0.72 7.66 G 1.6 M
Proposed system Linear Causal 11.3 6.3 5.9 0.08 3.31 G 1.6 M
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has been measured on an Intel Core i7-10850H CPU (2.7
GHz) as the time required to process an audio signal divided
by its duration, where we have conducted 100 passes with 4-s
segments of audio signals.

For the different variants, Table II shows the mean SI-
SDR and the computational and memory costs of the base-
line systems with traditional MHSA (non-causal and causal
modes), the baseline system with memory-efficient MHSA
(causal mode), and the proposed linear TCN-Conformer sys-
tems (causal mode). First, it can be observed that all target
speaker extraction systems significantly improve the SI-SDR
for all mixture types compared to the input mixtures. As
expected for all variants, the performance of the baseline
system with traditional MHSA degrades in causal mode com-
pared to non-causal mode. Second, it can be observed that
the baseline system with memory-efficient MHSA shows a
slight reduction in RTF compared to the baseline system
with traditional MHSA, however with a small reduction in
the speaker extraction performance. Third, it can be observed
that the proposed linear TCN-Conformer system outperforms
the corresponding causal baseline system with traditional and
memory-efficient MHSA at a significantly reduced RTF for
all variants and mixture types (except for the Medium variant
and noisy-mix). Furthermore, it can also be observed that the
number of MACs per seconds for both baseline systems with
traditional MHSA and memory-efficient MHSA (causal mode)
remains approximately similar, while for the proposed system
with linear MHSA the number of MACs reduces significantly
compared to each baseline system for each variant. Although
it may appear rather surprising that the proposed system with
linear MHSA improves the speaker extraction performance
compared to both baseline systems, a similar performance
improvement has also been observed in [21]. One possible
reason is that linear MHSA generates smoother, more globally

coherent temporal attention weights that suppress artifacts
more effectively than traditional or memory-efficient MHSA.
Fourth, it can be observed that except for the XSmall causal
baseline systems, none of the other baseline systems is suitable
for real-time processing (i.e., RTF larger than 1). On the
contrary, except for the Large variant of the proposed linear
TCN-Conformer system with 12.3 M parameters, all other
variants are suitable for real-time processing. For example,
compared to the corresponding XSmall causal baseline system
with traditional MHSA, the proposed XSmall linear TCN-
Conformer system with 1.6 M parameters improves the per-
formance by 0.7 dB for 2-mix, 0.2 dB for 3-mix, and 0.7
dB for noisy-mix with a reduction of approximately 91% in
RTF. Additionally, it can be observed that the RTF reduction
improves for smaller variants of the system.

V. CONCLUSION

In this paper, we demonstrated the advantages of using
linear self-attention for real-time speaker-conditioned target
speaker extraction using a TCN-Conformer architecture. To
reduce both memory and computational costs, we replaced the
traditional multi-head self-attention in each conformer block of
the separator network with a linear multi-head self-attention,
which requires linear memory and computational costs. Ad-
ditionally, we reduced the overall number of parameters by
factors of 2, 4, and 8 to enhance the capability for real-time
processing. Experimental results on different mixtures show
that the proposed system with linear self-attention outperforms
the corresponding causal baseline system with traditional
and memory-efficient self-attention, considerably improving
computational cost and real-time factor.
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