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Abstract—In this paper, we present a comprehensive analysis
of natural and reverberated speech signals, focusing on their
time-domain characteristics and corresponding Teager Energy
Operator (TEO) profiles. Our study highlights significant dif-
ferences between these two perspectives, offering new insights
into the acoustically complex phenomenon of reverberation.
We propose a dereverberation method that utilizes the data
fusion of spectrogram of raw waveform and its corresponding
TEO profile.This fusion approach is integrated into a U-Net-
based convolutional neural network (CNN) model, which is
well-suited for learning structured representations in speech en-
hancement tasks. In particular, U-Net performs reverse mapping
from the reverberated speech signal to the original audio. For
our experiments, we use the Valentini-Botinhao Noisy Speech
Dataset, which provides a controlled environment for evaluating
dereverberation techniques. Our results demonstrate that the
proposed fusion of features, effectively suppresses reverbera-
tion, significantly improving speech quality and intelligibility.
Specifically, we observe a 1.25% improvement in Root Mean
Squared Logarithmic Error (RMSLE), decreasing from 40 to
39.5, indicating the robustness of our approach.

Index Terms—Deep Learning, U-Net CNN, Teager Energy
Operator (TEO), Dereverberation.

I. INTRODUCTION

Reverberation is a natural acoustic phenomenon that occurs
when sound waves reflect off surfaces multiple times until
they gradually lose energy and dissipate. The distinction
between echo and reverberation lies in the number and du-
ration of reflections. Echo involves fewer reflections with a
longer delay, whereas reverberation consists of rapid, densely
packed reflections with a shorter duration [6]. Echo results
from a single, distinct reflection off a distant hard surface,
while reverberation occurs due to multiple reflections from
nearby surfaces, creating a continuous, blended sound [6].
Reverberation introduces a delay in the speech signal due
to reflections that vary based on environmental factors. It
converts a monocomponent signal into a multicomponent one,
where the spectral proximity of components makes it difficult
to distinguish the original speech from its reflections [1].
Recent advancements in speech dereverberation have led to
state-of-the-art techniques. Zhang et al. proposed an end-
to-end framework integrating dereverberation, beamforming,
and speech recognition, demonstrating enhanced numerical
stability and improved performance in challenging auditory
environments such as cocktail party scenarios [11], [12].
Additionally, Lemercier et al. introduced a customizable on-
line neural network-based dereverberation system designed
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for hearing devices, optimizing speech clarity [13]. These
contributions collectively enhance speech recognition accuracy
and reduce the impact of reverberation. In this paper, we ex-
plore speech features for dereverberation. Our focus is on the
comparison between natural and reverberated speech signals,
specifically examining these signals in the time-domain, and
their corresponding Teager Energy Operator (TEO) profiles.
Furthermore, we delve into the study of dereverberation, a
process aimed at reducing the reverberation effect in a speech
signal. For this purpose, we have a model based on the U-Net
architecture, which is a type of convolutional neural network
known for its effectiveness in reverse mapping from noisy
speech spectrum to clean speech spectrum. This is particularly
important in telecommunication, automatic speech recogni-
tion (ASR), and other speech processing applications, where
speech quality is crucial. Therefore, the study of reverberation
and the development of effective dereverberation techniques
are of great significance [7], [10].

II. MATHEMATICAL MODEL FOR REVERBERATION

Reverberation occurs when sound waves continue to reflect
off surfaces within an enclosed space, even after the original
sound source has ceased [2]. These reflections can be classified
based on their order: first-order reflections involve a single
deviation, second-order reflections undergo two deviations,
and higher-order reflections continue this pattern. As reflec-
tions accumulate, their intensity gradually diminishes due to
absorption by surfaces and objects within the environment, as
depicted in Fig. 1 (a) [1], [2], [5].
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Fig. 1. Reverberation causes alterations in the delay and amplitude of speech,
where ‘simple’ refers to unaltered, clean speech, and ‘reverb’ denotes the
speech post-reverberation. Data taken from WHAMR dataset [16].

The reflections introduce a delay and variation in amplitude
relative to the original speech signal, causing temporal and
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spectral distortions, as shown in Fig. 1. The speech signal in
a reverberant environment can be mathematically modeled as
the convolution of the clean speech signal, s(t), with the room
impulse response (RIR), h(t), as depicted in Fig. 2 [1]:
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Fig. 2. Impulse response and its characteristics. Impulse response (IR) taken
from ICASSP DNS 2023 Challenge Dataset. After [6].

y(t) = s(t) x h(2), (1)

The observed reverberant speech is denoted as y(t), with *
representing the convolution operation. Fig. 2 depicts the im-
pulse response (IR) of a reverberant environment, highlighting
a distinct structure within the initial 100 ms, followed by a
diffuse tail. The early segment comprises discrete reflections,
primarily first- or second-order, which then transition into a
densely packed diffuse region. These characteristics play a
crucial role in defining the acoustic properties of various envi-
ronments. The first peak in the reverberant signal corresponds
to the direct-path signal, which travels the shortest distance
from the source to the microphone. Subsequent peaks arise
due to reflections, each associated with a unique propagation
path. As the reflections increase in density, they begin to
overlap over time [2]. Since surfaces and air absorb energy
at each reflection, longer propagation paths result in lower
amplitudes, creating a gradually decaying tail in the impulse
response. Under the Linear Time-Invariant (LTI) assumption,
the impulse response of an LTI system describes the acoustic
environment in which the recording takes place [1], [2].

Reverberation time (RT60) is a key parameter for assessing
reverberation, measuring how long it takes for sound energy
to decrease by 60 dB after the source stops emitting. It is
defined as the time interval ¢, — ¢t; during which the sound
pressure level drops by 60 dB [3]. RT60 plays a vital role
in characterizing a room’s acoustical properties. When speech
signals are recorded with distant microphones, they inevitably
include both noise and reverberation, which degrade speech
quality and impact automatic speech recognition (ASR) per-
formance. A reverberant speech signal at time ¢, represented
as y(t), can be formulated as:

y(t) = h(t) * s(t) + n(t), 2

where h(t) is the room impulse response between the
speaker and the microphone, s(t) is the clean speech signal,
n(t) represents background noise, and * denotes convolution.
While various signal processing techniques, such as TEO,

effectively suppress additive noise (i.e., n(t) in Eq. (2)), han-
dling reverberation (i.e., h(t) in Eq. (2)) remains a challenging
problem in speech enhancement research [14].
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Fig. 3. TEO Analysis: (a) original speech signal, (b) corresponding TEO
profile, (¢) TEO-based spectrogram. Panels I and II show clean and reverber-
ated speech, respectively. Considerations include RT60 of 1.4 in live spaces,
such as a small theatre, with specific materials on the theatre walls affecting
acoustics.

III. TEO-BASED FEATURES

TEO (Teager Energy Operator) is a non-linear operator
used to estimate a signal’s running energy by capturing the
interaction between its amplitude and frequency. Unlike the
conventional L2 norm, TEO provides an alternative measure
of energy in signal processing [18]. It is defined as:

Py{z(n)} = 22(n) — z(n — Dz(n+ 1) = A%w%.  (3)

TEO generates high-energy peaks around Glottal Closure
Instants (GCIs) due to the abrupt excitation of the vocal
tract during glottal closure. This sudden closure results in
an energy spike, which is captured by TEO. Additionally,
smaller fluctuations, or bumps, appear alongside these peaks,
highlighting the non-linear characteristics of natural speech
production [1]. The energy of z(n) is estimated using TEO,
as proposed by Kaiser (1990) [18], leading to Eq. (3). Since
TEO is primarily designed for monocomponent signals, en-
ergy separation algorithms (ESA) were introduced to extract
individual contributions of amplitude A and frequency w. A
real-valued, continuous-time AM-FM signal is expressed as:

z(t) = a(t) - cos(g(t)) = a(t) .cos(wct—i—wm/o p(N)d\+6),
“4)

where a(t) represents the time-varying amplitude signal
modulated by the high frequency signal cos(-), which results

487



in AM. The examination of reverberation through the lens of
the Short-Time Fourier Transform (STFT) domain, the study
of reverberation via Teager Energy features and noise spectrum
comparison of TEO as conducted in the papers [1] and [17],
inspired us to undertake an analysis using the TEO as shown
in Fig.3.

IV. MODEL EXAMINATION

A. Fully-Convolutional Networks U-Net

1) Architecture: The U-Net, a fully-convolutional network
architecture, is particularly beneficial for speech dereverber-
ation tasks due to its unique structure and capabilities [19].
Moreover, U-Net to handle inputs of varying sizes, making it
adaptable to different speech signals. Its end-to-end training
allows for the direct optimization of the dereverberation task,
leading to improved performance [8]. Additionally, U-Net has
been successfully used in a Late Reverberation Suppression
(LS) setting, demonstrating its effectiveness in reducing re-
verberation. Furthermore, the Tiny Recurrent U-Net (TRU-
Net) variant has been shown to be efficient for online speech
enhancement, providing real-time processing capabilities [9].

TABLE I
PARAMETERS AND LAYERS OF THE U-NET MODEL AFTER [19].
Parameter Value
Window Length 512
FFT Length 512
Number of Features 256
Number of Segments 256
Filter Height 6
Filter Width 6
Number of Channels 1
Number of Filters [64,128,256,512,512,512,512,512]

The U-Net model consists of an input layer, a squeezing
path, and an expanding path. The squeezing path includes
convolutional 2D layers with leaky ReLU activation functions
and batch normalization. The expanding path includes trans-
posed convolutional 2D layers, batch normalization, dropout
layers, ReLU activation functions, and a tanh layer. The model
concludes with a regression layer. Skip connections are defined
between the leaky ReLU layers and the concatenation layers
in the expanding path.

2) Preprocessing and Feature Extraction: In the pre-
processing stage, we employ the STFT in order to obtain
a time-frequency representation of the input speech signal.
Given that speech is inherently non-stationary, STFT provides
a structured way to analyze its spectral evolution over time.
However, conventional STFT-based representations often fail
to fully capture the intricate energy dynamics present in
reverberant conditions [19].

To enhance the spectral representation, we introduce a novel
TEO Fusion mechanism. The process follows these key steps:

1) STFT Extraction: The spectrogram is computed using

STFT, providing a 2D time-frequency representation of
the reverberant signal.

2) TEO Spectrum Enhancement: The TEO is applied to

the raw signal in order to capture localized instantaneous

energy variations and emphasize high-energy transient
components [18].

3) Fusion Strategy: The STFT and TEO-derived spectrum
are fused using an adaptive weighted averaging method,
which integrates localized energy fluctuations into the
standard spectrogram.

4) Normalization and Reshaping: The fused spectrogram
is scaled to [-1,1], ensuring consistency across training
samples.

The fused spectrum is computed using a weighted combi-
nation of the standard STFT spectrum and the TEO-derived
spectrum:

Stusion (£, f) = aSster(t, f) + (1 — a)Steo(t, f),  (5)

where Sster(t, f) represents the STFT magnitude spectrum,
and Steo(t, f) corresponds to the spectral representation ob-
tained from TEO profile. The parameter o controls the relative
contribution of each component. For this experiment, we set
o = 0.5. This simple averaging ensures that transient energy
variations captured by TEO are integrated into the standard
spectrogram while maintaining spectral consistency.

The enhanced STFT-TEO fusion is then fed into a U-
Net-based dereverberation model, as shown in Fig. 4. This
approach builds upon the model proposed in [19], where we
retain the same U-Net architecture but introduce the TEO-
enhanced STFT as input. The U-Net model is trained to map
the fused spectrogram to a clean STFT spectrum, which is
subsequently inverted to reconstruct a high quality, derever-
berated waveform. The key advantage of our approach is that
the additional feature space introduced by TEO fusion enriches
the spectral representation, allowing the U-Net to learn a more
robust mapping between reverberant and clean speech signals.

Our results indicate that this simple yet effective modi-
fication leads to a marginal but consistent improvement
over the standard STFT input, reinforcing the hypothesis that
TEO-derived energy cues enhance speech dereverberation
models.

B. Database Used

We used the noisy speech database from the University
of Edinburgh’s School of Informatics [15] for training and
evaluating speech enhancement and TTS models. Recorded at
48 kHz, it includes 23,000 training samples from 56 speakers,
11,000 additional samples from 28 speakers, and 824 test
samples. Bit resolution is 16-bit per speech sample. The
dataset’s diverse noisy conditions make it a valuable resource
for developing robust models [15].

C. Performance Metrics

To evaluate the model’s performance, we used three
key metrics: Cepstrum Distance (CD), Log-Likelihood Ratio
(LLR), and Root Mean Squared Logarithmic Error (RMSLE)
for assessing speech dereverberation quality.
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Fig. 4. Functional block diagram of the proposed TEO-STFT fusion-based speech enhancement model.

TABLE 11
TRAINING PARAMETERS. AFTER [19].
Parameter Value
Initial Learning Rate 8e-4
Mini Batch Size 8
Max Epochs 50
Learn Rate Drop Period 15
Execution Environment GPU
Validation Data valReverb,valClean

1) Cepstrum Distance (CD): It quantifies the spectral dif-
ference between the predicted and clean speech signals in the
cepstral-domain [19]. It measures how closely the predicted
signal’s spectral envelope matches that of the clean speech. A
lower CD value indicates a better approximation to the clean
signal [19].

2) Log-Likelihood Ratio (LLR): LLR is a linear prediction-
based measure that evaluates the spectral distortion between
two signals [19]. It compares the prediction residuals of
the clean and estimated speech signals, with lower values
indicating reduced distortion and better dereverberation quality
[19].

D. Root Mean Squared Logarithmic Error (RMSLE):

RMSLE measures the difference between the logarithms of
predicted and actual values, focusing on relative errors. It is
defined as:

N

RMSLE = | 3~ (log(1 ) ~los(1 )", ()
where ¢; and y; are the predicted and actual values, re-

spectively, and N is the total samples. The logarithm prevents

issues with zero values, and RMSLE is beneficial for speech

enhancement as it penalizes overestimations more than under-

estimations.

Table III presents the comparative performance metrics for
speech reconstruction and reverberation using the STFT and
STFT + TEO methods.Both performance metrics indicate that
the model’s output closely matches the clean, dereverberated
signal. The STFT + TEO method demonstrates marginal
improvements over STFT alone, particularly in CD and LLR
values.

TABLE III
COMPARATIVE PERFORMANCE METRICS OF SPEECH RECONSTRUCTION
AND REVERBERATION FOR STFT AND STFT + TEO METHODS

Reverberated | STFT STFT + TEO
Average CD Mean 4.25 3.84 3.83
Average CD Median 3.63 3.35 3.37
Average LLR Mean 0.97 0.94 0.91
Average LLR Median | 0.87 0.80 0.82
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Fig. 5. Comparative analysis of time-domain waveforms (Panel I) and

spectrograms (Panel II) for (a) clean, (b) reverberated, and (c) predicted
dereverberated speech signals.

E. Experimental Results

The U-Net demonstrated strong performance in derever-
beration. Building upon prior work [19], we adopted the U-
Net architecture while introducing modifications to the input
spectrogram representation. These refinements enabled im-
proved dereverberation quality, as reflected in key performance
metrics. The model was trained using the parameters outlined
in Table III, with a steady reduction in training loss, con-
firming effective learning. Notably, the RMSLE improved by
1.25%, decreasing from 40 to 39.5. The training progression,
characterized by a consistent decline in loss and improved
RMSLE over successive epochs, highlights the model’s ability
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Fig. 6. Cepstrum Distance (CD) estimation and Log-Likelihood Ratio (LLR)
between reverberated and dereverberated signals.

to generalize well to reverberant speech.

Figs. 6 illustrate the comparative analysis of speech sig-
nals in both time and frequency-domains. The dereverberated
output exhibits improved alignment with the clean speech
signal, demonstrating the model’s capacity to recover speech
quality from reverberant input. Furthermore, the STFT + TEO
method yielded consistent improvements over the STFT-only
approach, particularly in terms of Cepstrum Distance (CD) and
Log-Likelihood Ratio (LLR). While direct numerical compar-
isons with prior work [19] are not applicable due to dataset
differences, our results reaffirm the effectiveness of the U-
Net framework. The proposed modifications to the input spec-
trogram contribute to improved performance, demonstrating
that spectral domain refinements can enhance dereverberation
quality across diverse datasets.

V. SUMMARY AND CONCLUSIONS

In sum, our model for speech dereverberation, which fuses
spectrograms with a U-Net, has shown promising results but
also exhibits limitations. The current method relies heavily
on the power of convolutional networks in the frequency-
domain, which may not consistently provide the most accurate
outcomes across diverse acoustic environments or for different
types of reverberation. Future directions for this field involve
exploring alternative neural network architectures and machine
learning algorithms that can offer more accurate or efficient
dereverberation and separation. Additionally, further research
is needed to improve the robustness of the current method
in various acoustic conditions by developing more efficient
algorithms for real-time processing, exploring techniques for
handling non-linear or complex reverberations, and creat-
ing comprehensive evaluation metrics to assess performance.
Moreover, open research problems remain, such as enhancing
model robustness in highly variable acoustic environments,
effectively addressing non-linear reverberation challenges, and
developing standardized evaluation metrics that comprehen-
sively capture performance across diverse scenarios. Our work
is intended to inspire further research in these areas and con-
tribute to the ongoing advancements in speech dereverberation
and separation, paving the way for innovative solutions in this
exciting field of study.
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