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Abstract—Previous studies have shown that utilizing training
data in similar languages can reduce translation errors in
machine translation (MT). However, its potential in speech
translation (ST) remains underexplored. In this study, we propose
a novel method to enhance cross-modal training of ST models by
incorporating external ST data from the same language group
without explicit language tagging. We evaluate our method based
on the ConST model on the CoVoST 2 Es-En dataset, and
experimental results show that the performance improves as
more ST data in similar languages is introduced. The model
trained with 400 hours of external ST data in similar languages
improved the BLEU score by 11.42% and 10.74% compared to
the baseline model with no external data and the model trained
with 1 million external Es-En MT data. These results demonstrate
that our approach can improve ST performance, especially under
low-resource conditions.

Index Terms—Speech translation, Low-Resource Language,
Language group, multi-modality

I. INTRODUCTION

Speech Translation (ST) is a cross-modal task in which
a model converts speech input in a source language into
text in a target language. Recent advances in end-to-end ST
have achieved performance comparable to traditional cascaded
systems combining automatic speech recognition (ASR) and
machine translation (MT). Additionally, these end-to-end ap-
proaches have the advantage of reducing latency and error
propagation [1]-[6].

One of the main challenges in training end-to-end ST
models is the scarcity of data. For example, there are only
a few hundred hours of data in the MuST-C corpus [7], or
the data per language pair is unbalanced, as in the CoVoST 2
corpus [8], where the data range from a few to hundreds of
hours per language pair. These amounts are much smaller than
the available data for ASR [9]-[14] or MT [15]-[17]. How to
better utilize the limited labeled ST data and other parallel MT
corpora is a promising research area.

One aspect of the research explores the use of pre-
trained ASR or MT models to initialize the parameters of
the ST model. Another aspect is the use of ASR or MT
data for multi-task assistance in ST model training [18]-
[21]. There are also some studies on data augmentation
for ST, such as perturbation-based methods SpecAug [22],

* These authors contributed equally to this work.

ISBN: 978-9-46-459362-4

Chia-Hua Wu*

Academia Sinica
Taipei, Taiwan

maxwu@iis.sinica.edu.tw yu.tsao@citi.sinica.edu.tw whm@iis.sinica.edu.tw

491

Yu Tsao
Academia Sinica
Taipei, Taiwan

Hsin-Min Wang
Academia Sinica
Taipei, Taiwan

DropDim [23], and SkinAugment [24], synthetic methods text-
to-speech (TTS) [25] and back-translation [26], and STR [27].
However, these previous studies typically only performed data
augmentation on a single modality and have not yet been
validated on strong baselines.

Furthermore, previous research has demonstrated that uti-
lizing training data in similar languages can significantly
improve MT performance for target language pairs, especially
for low-resource language pairs [28]-[32]. It would be highly
beneficial if we could effectively leverage data from relevant
languages in ST tasks, since ST training data is much less
than what is available for MT. However, to the best of our
knowledge, applying data from similar languages to enhance
ST has not been extensively explored.

Therefore, in this paper, we explore data augmentation
using ST training dada in similar languages when training
ST models. Many current state-of-the-art (SOTA) cross-modal
training methods for ST focus on modality alignment [33]-
[37], and most studies are performed on the MuST-C dataset
(mainly English-other language ST). However, while there
are many public tools available for cross-modal alignment or
word alignment between speech and text in English, adapting
these tools to cross-modal tasks in other languages, especially
low-resource ones, can be quite challenging. To avoid these
limitations and ensure that our approach works well in low-
resource settings, we choose the ConST model [38] as the
backbone ST model and use the CoVoST 2 dataset (Spanish-
English ST) as our experimental setting. ConST is built on
a multi-task training framework employing a cross-modal
contrastive learning approach. We propose data augmentation
with ST training dada in similar languages to enhance cross-
modal training within its multi-task training framework.

The contributions of this study are as follows:

e We explore the impact of different modalities and lan-
guages on data augmentation. Experimental results show
that our method achieves good performance on the Es-
En ST task on the CoVoST 2 dataset.

e We see great potential in using ST data of similar
languages for data augmentation in ST model training
compared to data augmentation using external MT data
of the same language pair.

e Our method is expected to generalize to other low-
resource ST tasks.
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Fig. 1: Architecture diagram of cross-modal multi-task training
in speech translation.

II. METHOD

Our work mainly extends the ConST model [38]. As shown
in Figure 1, the framework comprises four sub-modules: a
speech encoder (S-Enc), a word embedding layer (T-Emb),
a Transformer encoder, and a Transformer decoder. The
architecture provides a common framework for three tasks,
including ST, MT, and ASR. Input can be fed into the speech
encoder (speech input) or the word embedding layer (text
input) along with a leading language ID tag, allowing seamless
adaptation to ST, MT, and ASR tasks, all of which are involved
in the model training process. Language ID tags are also used
as beginning-of-sequence (BOS) tokens for the Transformer
decoder to generate the corresponding text. For example, if
the input is Spanish speech corresponding to “Fue de origen
belga.”, the ASR task uses [es] as the BOS token and expects
to output “[es] Fue de origen belga.”. To translate the input
Spanish speech into English text, [en] is used as the BOS
token, and the decoded output “/en] He was from Belgium.”
is expected. In the inference stage, the model performs the ST
task, which takes speech in the source language as input and
produces text in the target language as output.

The above multi-task training requires an ST corpus con-
sisting of speech-transcription-translation triples, denoted as
D = {(s,x,y)}, where s represents speech in the source
language, x is the corresponding transcription, and y is the
translation in the target language. In multi-task training, ST
is the primary task, and ASR and MT are secondary tasks.
Given the training sets Dgr = {(s,y)}, Dasr = {(s,x)},
and Dy = {(x,y)}, the loss functions of these three tasks
are defined as follows:
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Many studies [33]-[35], [38]-[41] have shown that during
the model training stage, bringing the representation of speech
and its transcripts closer while pushing the representations
of speech and other speech transcripts away can improve ST
performance. We consider each speech-transcript pair (s, x)
in a batch as a positive example and the pairs of s with the
remaining N — 1 transcripts in the batch {(s,x;) j}f:—ll as
the corresponding negative examples. The multi-class N-pair
contrastive loss [42] is defined as:

Lo = 3" log PO 0G)/T)
2 e aexp(sim(u(s), o(x) /7]
where A = {x} U {xj};v:_ll, T is the temperature parameter,
sim(u,v) is the cosine similarity function, and w and v
are mean functions of speech and transcript representations
calculated as u(s) = MeanPool(S-Enc(s)) and v(x) =
MeanPool (T-Emb(x)).
The overall training loss function combines this contrastive
loss with the cross-entropy losses of ST, MT, and ASR, and
is expressed as follows:

“4)
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where ) is a hyper-parameter that controls the contribution of
the contrastive loss.

A. Data Augmentation with Data in Similar Languages

In natural language processing (NLP) and related fields,
data augmentation that takes into account linguistic similarities
and differences across languages can significantly improve
model performance [43]. An effective strategy is to classify
languages into groups or families based on common linguistic
features such as grammar, syntax, and vocabulary. Common
language families include Indo-European, Sino-Tibetan, and
Afro-Asiatic, each of which contains multiple languages with
varying degrees of similarity.

Within the framework of our Spanish-English ST exper-
iments on the CoVoST 2 dataset [8], we incorporate ST
data from other languages into the original training data
as a form of data augmentation. Specifically, we collected
data for the French-English (264 hours), Italian-English (44
hours), Portuguese-English (10 hours), and Catalan-English
(136 hours) ST tasks, for a total of 454 hours, called external
Language Group Speech Translation data (external LG ST
data). French, Italian, Portuguese, and Catalan belong to the
same Indo-European/Italic branch. We hypothesize that their
linguistic proximity to Spanish might have a positive impact
on the performance of the Spanish-English ST model.
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(a) Unified tagging (b) Language-specific tagging

Fig. 2: Bivariate KDE contour plots of the representation
of speech and transcripts under different language tagging
strategies (unified vs. language-specific) used in data augmen-
tation using external LG ST data. Blue lines represent speech
embeddings, and orange lines represent transcript embeddings.
The visualization is derived from the output of the Transformer
encoder on the Es-En test set, reduced to 2D using t-SNE.

To compare “data augmentation using external ST data in
similar languages” and “data augmentation using external MT
data”, we leveraged the OPUS-100 corpus [44] as an external
source of MT data to enable cross-task data augmentation.
One million Spanish-English sentence pairs selected from
the OPUS-100 corpus are used as external Spanish-English
Machine Translation data (external Es-En MT data).

Note that if using external Es-En MT data in data augmen-
tation, the additional input is Spanish text, and [src_tag] is
always [es]. However, when using external LG ST data in data
augmentation, the language ID of the additional input can be
other than [es]. In our experiments, if [es] is used uniformly as
[src_tag] for input in different languages, it is called “unified”,
and if different language IDs are used as [src_tag] for input
in different languages, it is called “language-specific”. A
unified audio tag [audio] is used for input speech in different
languages.

III. EXPERIMENTAL SETUP

A. Dataset

The CoVoST 2 dataset [8] is a multilingual ST corpus
containing translations from 21 languages to English and from
English to 15 languages. Our study focuses specifically on the
non-English-English (X-En) translation direction. The dataset
covers 21 languages in 9 distinct language families. For the
purpose of our analysis, we selected the Spanish-English (Es-
En) ST task as a case study. The dataset for this task includes
113 hours of training data, 22 hours of validation data, and
23 hours of testing data. As described in Section II-A, we
performed data augmentation in model training using training
data for the French (Fr)-, Italian (It)-, Portuguese (Pt)- and
Catalan (Ca)-En ST tasks.

B. Baseline Systems

This study uses the ConST model [38] as the backbone
model and one of the baseline models. It uses cross-modal
training and has approximately 150 million parameters. The
baseline models also include three models from the CoVoST 2
benchmark [8]. The ASR model and the ST model share the
same Transformer encoder-decoder architecture [46], where
there are 12 encoder layers and 6 decoder layers. A convolu-
tional downsampler is applied to reduce the length of speech
inputs by 3/4 before they are fed into the encoder. The MT
model uses a Transformer base architecture with 3 encoder and
3 decoder layers, a dropout rate of 0.3, and shared embeddings
for the encoder/decoder inputs and decoder outputs

Transformer-ST is a Transformer-based ST model trained
from scratch without any pre-training. The Transformer-
ST+ASR pre-trained model uses ASR pre-training before fine-
tuning for the ST task. Transformer-ST model parameters
are about 31M. Cascade ST is a model that sequentially
connects two independent components: ASR and MT. Revisit
ST [45] represents an enhanced and optimized version of the
Transformer-based ST model with 51 million parameters.

C. Experiment Details

We conducted experiments on the ConST model', which is
built on the Fairseq framework [47]. Performance is measured
by case-sensitive, de-tokenized BLEU scores calculated using
sacreBLEU [48].

When training the model without using external LG ST data,
we applied SentencePiece [49] with a shared vocabulary of
10,000 tokens to process bilingual text, following the approach
in [38]. In a data augmentation setting using external LG ST
data, we switched to SentencePiece with byte-pair encoding
(BPE) [50], expanding the vocabulary size to 30,000 tokens.
In all experiments, A in Eq. 5 was set to 1.0.

The Wav2vec 2.0 model used in S-Enc is pre-trained on the
Librispeech dataset [9] without any downstream fine-tuning.
Following the Wav2vec 2.0 module, the two convolutional
neural network (CNN) layers were configured with a kernel
size of 5, a stride size of 2, and a hidden size of 512.
The Transformer component used a base configuration with
6 layers each for the encoder and decoder, a hidden size of
512, 8 attention heads, and 2048 feed-forward network (FFN)
hidden states. Pre-layer normalization was applied to ensure
stable training. Through these configurations, the entire model
has approximately 150 million parameters.

IV. EXPERIMENTAL RESULTS

The experimental results in Table I show the performance
of various models and data augmentation strategies on the
CoVoST 2 Es-En test set. The baseline ConST model (Al)
has a BLEU score of 26.28, serving as a reference to compare
different models. Among them, the Transformer-ST model
trained without any auxiliary data showed limited performance
with a BLEU score of 12.00, while the inclusion of ASR

Thttps://github.com/Renee Ye/ConST.git
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TABLE I: BLEU scores of different models on the CoVoST-2 Es-En test set. *: results from [8] or [45].

ID Model # MT data # ST data BLEU (%)
augmented | augmented | Score Gain 1

Transformer-ST from scratch [8]* 0 0 12.00 -

Transformer-ST + ASR pre-trained [8]* 0 0 23.00 -

Cascaded ST [8]* 0 0 27.40 -

Revisit ST [45]* 0 0 15.70 -

Al Baseline (ConST) [38] 0 0 26.28 -
A2 w/ external Es-En MT data 1 million 0 26.44 (+0.16)

A3 w/ external LG ST data (Part of Fr-En) | o | 10 hours | 2455  (—1.73)

A4 w/ external LG ST data (Part of Fr-En) 0 50 hours 25.77 (—0.51)
A5 w/ external LG ST data (Part of Fr-En) 0 100 hours 26.71 (+0.43)
A6 w/ external LG ST data (Fr-En) 0 264 hours 27.31 (+1.03)
A7 w/ external LG ST data (Fr-En + Ca-En) 0 400 hours 29.28 (+3.00)
A8 w/ external LG ST data (Fr-En + Ca-En + It-En) 0 444 hours 28.52 (+2.24)
A9 w/ external LG ST data (all) 0 454 hours 29.02 (4+2.74)

TABLE II: Performance comparison of using a unified token
or language-specific tokens in data augmentation using ST data
in similar languages.

Model # ST data [src_tag] BLEU (%)T
augmented
Baseline 0 hours unified 26.28
w/ external LG ST data 454 hours unified 29.02
w/ external LG ST data 454 hours language-specific 28.30

pre-training significantly improved the score to 23.00. The
Cascaded ST model has the highest score of 27.40, exceeding
the baseline ConST model we adopted. The Revisit ST model
performed mediocrely, with a score of 15.70.

When focusing on comparing different data augmentation
methods, we first see that adding the Es-En MT data (A2)
results in a slight performance improvement of 0.16, reaching
a BLEU score of 26.44. However, leveraging external LG ST
data (A3 to A9) shows a more substantial effect. With only 10
hours of Fr-En ST data, the performance drops to 24.55, but
the BLEU score continues to improve as the amount of Fr-En
ST data increases. The best performance is achieved with 400
hours of external LG ST data (A7), reaching a BLEU score
of 29.28, a significant improvement of 3.00 over the baseline.
Beyond 400 hours, the incremental benefit from additional data
becomes smaller. The main reason is that the external LG
ST data is not Es-En ST data after all, and too much may
obscure the real Es-En ST data during model training. Overall,
these results highlight the effectiveness of data augmentation
using external LG ST data for improving ST performance and
demonstrate that data augmentation using external LG ST data
is not “more is better”.

V. ANALYSIS

A. Do We Really Need Separate Tags for Each Language?

As shown in Table II, when external LG ST data are used
for data augmentation, the BLEU score using a “unified”
tag is 29.02, which is slightly better than the score using

“language-specific” tags (28.30). Figure 2 shows bivariate
kernel density estimation (KDE) contour plots of the repre-
sentation of speech and transcripts under different language
tagging strategies (unified vs. language-specific) used in data
augmentation using external LG ST data. As shown in Fig-
ure 2a), unified tagging leads to better cross-modal fusion, re-
sulting in more coherent and consistent representation between
data modalities. In contrast, Figure 2b) shows that language-
specific tagging yields scattered and fragmented distributions,
indicating weaker cross-modal alignment. The better cross-
modal consistency of unified tagging in Figure 2 aligns with
its better BLEU score in Table II.

VI. CONCLUSION

The end-to-end ST model faces major challenges due to
data scarcity. Previous studies mainly addressed addressed this
problem through ASR or MT pre-training, or using MT data
for data augmentation. This study introduces a novel approach
to improve speech translation performance by leveraging
ST data in similar languages, reducing reliance on source
language-specific data, especially in low-resource scenarios.
The method shows strong adaptability in environments where
source speech data are scarce or transcription costs are high.

In our experiments, the baseline model achieved a BLEU
score of 26.28 on the CoVoST 2 Es-En test set. The commonly
used MT-based data augmentation method only slightly im-
proved the BLEU score to 26.44. In comparison, our approach,
augmented directly with speech translation data in similar
languages, significantly boosted the BLEU score by 3 points to
29.28. These results highlight the effectiveness of our approach
in enhancing speech translation performance, especially for
applications in resource-constrained languages.

Future work will explore automatic data selection tech-
niques to further minimize reliance on manual annotation
and prior language knowledge. This enhancement aims to
strengthen the robustness of our approach in different language
scenarios and expand its applicability.
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