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Abstract—In this work, we focus on source tracing of syn-
thetic speech generation systems (STSGS). Each source embeds
distinctive paralinguistic features—such as pitch, tone, rhythm,
and intonation—into their synthesized speech, reflecting the
underlying design of the generation model. While previous
research has explored representations from speech pre-trained
models (SPTMs), the use of representations from SPTM pre-
trained for paralinguistic speech processing, which excel in
paralinguistic tasks like synthetic speech detection, speech
emotion recognition has not been investigated for STSGS. We
hypothesize that representations from paralinguistic SPTM will
be more effective due to its ability to capture source-specific
paralinguistic cues attributing to its paralinguistic pre-training.
Our comparative study of representations from various SOTA
SPTMs, including paralinguistic, monolingual, multilingual, and
speaker recognition, validates this hypothesis. Furthermore, we
explore fusion of representations and propose TRIO, a novel
framework that fuses SPTMs using a gated mechanism for
adaptive weighting, followed by canonical correlation loss for
inter-representation alignment and self-attention for feature
refinement. By fusing TRILLsson (Paralinguistic SPTM) and
x-vector (Speaker recognition SPTM), TRIO outperforms indi-
vidual SPTMs, baseline fusion methods, and sets new SOTA for
STSGS in comparison to previous works.

Index Terms—Source Tracing, Paralinguistic Pre-Trained
Models, Synthetic Speech Generators

I. INTRODUCTION

Advancements in audio manipulation technology have
blurred the line between real and synthetic speech. Modern
text-to-speech (TTS) and voice conversion (VC) systems can
produce highly realistic voices, enabling malicious actors to
manipulate speech with remarkable accuracy. This growing
challenge highlights the urgent need for reliable methods to
detect and attribute synthetic speech. This advancement poses
significant risks, as malicious entities can exploit synthetic
speech for impersonation, fraud, and misinformation. As such
the urgent need for robust synthetic speech detection (SSD)
solutions becomes undeniable to safeguard trust in digital
communication. As a remedy there has been sufficient re-
search into SDD [1], [2], [3]. Also, the use of representations
from speech pre-trained models (SPTMs) such as Wav2vec2,

† Contributed equally as first authors

WavLM, Whisper have captured recent attention within the
community as these SPTMs provide performance benefit
[4], [5], [6]. These SPTMs are either fine-tuned or used
as feature extractors for extracting representations. Despite
much advancement in synthetic speech detection, most of the
previous research has mostly focused on distinguishing real
and synthetically generated speech i.e. binary classification,
but it is not sufficient to predict and mitigate misuse and
improve forensic analysis.

To further enhance synthetic speech detection from foren-
sic analysis, it is important to understand the exact tool used
to generate the speech and this task is known as Source
Tracing of Synthetic Speech Generation Systems (STSGS).
It has recently captured attention within the community
and plays a crucial role in improving the explainability of
detection systems, enforcing accountability, and developing
targeted countermeasures against malicious deepfake appli-
cations [7], [8], [9]. Each source (TTS, VC) imprint distinc-
tive paralinguistic features—including pitch, tone, rhythm,
and intonation—onto their synthesized speech, mirroring the
underlying design principles and processing mechanisms of
the respective generation models.

As such previous research on STSGS have investigated
representations from various state-of-the-art (SOTA) SPTMs
[10], [11], [12], [13] for understanding their capability for
capturing such source-specific paralinguistic cues. However,
they haven’t investigated the usage of representations from
SPTM pre-trained for paralinguistic speech processing such
as TRILLsson [14] which have shown SOTA behavior for
different paralinguistic tasks including tasks such as synthetic
speech detection and speech emotion recognition. In this
work, we solve this research gap and explore representa-
tions from paralinguistic SPTM for STSGS. We hypothesize
that paralinguistic SPTM representations will be the most
effective for STSGS, as their specialized paralinguistic pre-
training enables them to capture paralinguistic cues unique
to each source more effectively than other SPTM represen-
tations. To test this hypothesis, we conduct a comprehensive
comparative study of various SOTA SPTMs, including par-
alinguistic, monolingual, multilingual, and speaker recogni-
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tion. Our findings validate our hypothesis.
Additionally, inspired by prior research demonstrating

performance gains through SPTMs representations fusion
in related areas such as synthetic speech detection [15]
and speech emotion recognition [16], we also explore this
direction for STSGS. Phukan et al. [13] have made the
initial exploration for fusion of SPTMs representation for
STSGS, however, they have considered only a handful of
SPTMs representations, here, in our study, we consider a
wide range of SOTA SPTMs representations and also the
inclusion of paralinguistic SPTM representations that has
been missing and a major drawback in their study. To this
end, we introduce TRIO (GaTed Canonical CorRelatIOn
Attention Network), a novel framework for fusing SPTMs.
TRIO employs a gated mechanism for adaptive weighting
of representations, incorporates canonical correlation loss for
better alignment between the representations, and utilizes
self-attention for enhanced feature refinement. By fusing
TRILLsson (a paralinguistic SPTM) with x-vector (a speaker
recognition SPTM), TRIO achieves superior performance,
outperforming individual SPTMs, baseline fusion techniques,
and setting a new SOTA benchmark for STSGS in compari-
son to previous works.
In summary, the key contributions of this work are as
follows:

• We carry out a comprehensive comparative analysis of
various SOTA SPTMs representations to understand the
capability of paralinguistic SPTM representations for
STSGS. We show that representations from TRILLsson
achieves the topmost performance amongst all other
SPTMs representations.

• We introduce a novel framework, TRIO for effective
fusion of SPTMs representations. TRIO uses a gated
mechanism for adaptive representation weighting, ap-
plies canonical correlation loss for improved alignment,
and employs self-attention for refined feature enhance-
ment. By fusing TRILLsson and x-vector, TRIO sur-
passes individual SPTMs and baseline fusion methods,
setting a new SOTA benchmark for STSGS compared
to prior works.

To make our work more accessible and reproducible, we’ve
shared the code and models at 1.

II. SPEECH PRE-TRAINED REPRESENTATIONS

In this section, we present a brief overview of the SPTMs
used in our study. Wav2Vec22 [17], WavLM3 [18], and
Unispeech-SAT4 [19] are monolingual SPTMs and we con-
sider their base versions pre-trained on LibriSpeech (960
hours of English). Wav2Vec2 was trained to solve a con-
trastive learning objective, WavLM was pre-trained for solv-
ing masked speech modeling and speech denoising simulta-
neously while Unispeech-SAT was trained in a multi-task
speaker-aware format. Both WavLM and Unispeech-SAT

1https://github.com/Helix-IIIT-Delhi/TRIO-Source Tracing
2https://huggingface.co/facebook/wav2vec2-base
3https://huggingface.co/microsoft/wavlm-base
4https://huggingface.co/microsoft/unispeech-sat-base

have reported SOTA performance in SUPERB. We consider
XLS-R5 [20], Whisper6 [21], and MMS7 [22] for multilingual
SPTMs. We consider their 300M, 74M, and 1B parameters
version for XLS-R, Whisper, and MMS respectively. XLS-R,
Whisper, MMS were pre-trained on 128, 96, and over 1400
languages respectively. XLS-R and MMS follows Wav2vec2
architecture and pre-trained in a contrastive learning approach
while Whisper is a vanilla transformer encoder-decoder
architecture and trained in a multi-task manner. We also
consider speaker recognition SPTMs such as x-vector8 [23]
and ECAPA9 [24] as they have shown its effectiveness for
synthetic speech detection [15] as well as STSGS [13].
However, Phukan et al. [13] only considered x-vector in
their study and here, in our study, we included, ECAPA,
which shows further improvement over x-vector in speaker
recognition tasks. Both x-vector and ECAPA are trained
on Voxceleb1 + Voxceleb2. As paralinguistic SPTM, we
consider TRILLsson 10 [14]. It is a distilled model from the
SOTA universal paralinguistic conformer (CAP12). TRILLs-
son representations shows SOTA performance across various
paralinguistic tasks such as speech emotion recognition,
synthetic speech detection, speaker recognition, and we use
the version with 63M parameters. Additionally, we also add
Wav2Vec2-emo11, a SPTM fine-tuned for SER because SER
is inherently a paralinguistic application. Before passing the
speech samples to SPTMs, we resample them to 16KHz and
extract representations from the last hidden state of the frozen
SPTMs by mean pooling. We extract representations of 192
for ECAPA; 512 for x-vector, Whisper (We use its encoder);
768 for Wav2vec2, WavLM, Unispeech-SAT, Wav2vec2-
emo; 1024 for TRILLsson; 1280 for XLS-R, MMS.

III. MODELING

In this section, we discuss the downstream models used
with individual representations followed by the proposed
framework, TRIO for fusion of SPTMs representations. We
use fully connected network (FCN) and CNN as downstream
models as they have preferred by previous research as ef-
fective downstream networks [15], [13]. The CNN model
consists of two convolutional blocks that receives SPTMs
representations as input with 1D-CNN layers of 128 and 64
filters of kernel size 3 with each 1D-CNN layer followed by
maxpooling. Then we flatten the outputs and use a FCN block
that consists of two dense layers with 90 and 45 neurons
each followed by the final output layer that uses softmax
as activation function and outputs probabilities of the source
classes. The FCN model follows the same modeling paradigm
as used for the FCN block in the CNN model. The number of
trainable parameters in FCN models ranges 0.6 to 0.8M while
for CNN models, it varies between 0.8 to 1.2M, depending
on the input representations dimensionality.

5https://huggingface.co/facebook/wav2vec2-xls-r-300m
6https://huggingface.co/openai/whisper-base
7https://huggingface.co/facebook/mms-1b
8https://huggingface.co/speechbrain/spkrec-xvect-voxceleb
9https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb
10https://www.kaggle.com/models/google/trillsson
11https://huggingface.co/speechbrain/emotion-recognition-wav2vec2-IEMOCAP
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Fig. 1: Proposed Framework: TRIO

A. TRIO
The architecture diagram of the proposed framework,

TRIO for fusion of SPTMs representations is shown in Figure
1. TRIO leverages a gated mechanism to adaptively weight
representations, integrates canonical correlation loss to im-
prove alignment between them, and applies self-attention for
more effective feature refinement. First, the SPTMs represen-
tations are passed through to two convolutional blocks that
uses same modeling as used for individual representational
modeling above. Suppose, X and Y are features from two
SPTMs branches after the flattening them. Then the flattened
features are passed through gated mechanism that consists of
a sigmoid gate and the outputs are GX and GY . After that,
we perform element wise-multiplication with the original
features, X̂ = GX ⊙X, Ŷ = GY ⊙ Y to extract the most
relevant features. Next, the refined features are aligned using
canonical correlation analysis (CCA) as a novel loss function,
which maximizes the correlation between X̂ and Ŷ . Higher
CCA means better alignment. The CCA loss is formulated
as:

LCCA = tr
(
(ΣX̂X̂)−1/2ΣX̂Ŷ (ΣŶ Ŷ )

−1/2
)

where ΣX̂X̂ and ΣŶ Ŷ are the covariance matrices of X̂

and Ŷ , ΣX̂Ŷ is the cross-covariance matrix between X̂ and
Ŷ . tr(·) denotes the trace operation. LCCA ensures that the
representations X̂ and Ŷ are maximally correlated, thereby
improving their alignment. After aligning the features to a
joint representational space, we concatenate the features from
the two SPTMs representation networks. Following this, we
use a self-attention mechanism, which computes the queries
Q, keys K, and values V as: Q = XconcatWQ, K =

XconcatWK , V = XconcatWV where Xconcat represents the
concatenated features from SPTMs representations branches.
The attention scores are then computed using the scaled dot-
product attention:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V

Then the features are passed through a FCN block of two
dense layers with 90 and 45 neurons followed by a output
layer with softmax activation that outputs probabilities. We
perform joint optimization with the cross entropy loss LCCA.
Finally, the total loss L is given as: L = LCE+(−λ ·LCCA)
where λ is a hyperparameter controlling the importance of
LCCA. The negative sign before LCCA is used because
LCCA is formulated to maximize correlation, while loss
functions are typically minimized in optimization. By using
a negative sign, we effectively encourage the model to
maximize correlation while jointly minimizing LCE . The
trainable parameters range from 1.3 to 1.5M.

IV. EXPERIMENTS

A. Dataset

We use two benchmark synthetic speech detection
databases: ASVSpoof 2019 (ASV) [25] and FAD Chinese
Dataset (CFAD) [26]. ASV contains both real and synthetic
speech samples from 19 generative systems, recorded at 16
kHz. Real recordings feature diverse speakers with varying
accents and speaking styles, while synthetic samples were
generated using SOTA VC and TTS methods. We merged
the train, validation, and test splits for ASV, resulting in 19
synthetic speech source classes (A01 to A19). We followed
5-fold cross-validation for ASV, with 4 folds used for training
and one fold for testing. CFAD is a chinese dataset and
features real and synthetic samples from 12 speech synthesis
techniques including SOTA TTS and VC systems. We use the
official dataset split for training, validating and evaluation of
the models.
Training and Hyperparameter Details: The models are
trained for 50 epochs with a batch size of 32, utilizing
Adam as optimizer and cross-entropy as the loss function.
For experiments with TRIO, we kept the value of λ fixed
as 0.3 throughout the experiments as preliminary exploration
yielded optimal results. Dropout and Early stopping are used
for mitigating overfitting.

B. Experimental Results

Table I presents the evaluation scores of downstream
networks trained on different SPTMs representations. We use
accuracy and equal error rate (EER) as the evaluation metrics
following previous research on STSGS [13]. We report EER
by computing the average scores using a one-vs-all approach.
For ASV, we report the average of five folds scores and
for CFAD, we report the scores obtained in the official
evaluation set. Our findings indicate that representations from
TRILLsson (paralinguistic SPTM) consistently achieve the
highest attribution accuracy and the lowest EER, significantly
outperforming other representations. This reinforces their
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PTMs ASV CFAD

FCN CNN FCN CNN

A ↑ EER ↓ A ↑ EER ↓ A ↑ EER ↓ A ↑ EER ↓

W2V 46.24 15.44 63.76 6.78 51.37 24.20 76.59 9.19
WV 35.42 14.22 47.49 11.53 34.29 25.63 37.83 21.20
US 45.68 23.19 56.48 10.04 45.93 34.91 73.65 17.64
XR 65.67 10.53 80.24 5.03 52.43 17.32 77.98 8.54
WP 76.92 8.88 88.43 4.61 72.17 13.85 86.41 7.91
MMS 82.21 7.90 89.29 4.17 73.54 13.51 89.78 6.95
XV 89.46 5.43 96.63 2.13 76.85 11.63 92.33 4.47
EP 85.17 4.87 93.79 4.04 74.29 10.45 88.61 4.93
W2V-emo 72.59 9.65 82.29 6.32 70.53 12.96 85.39 12.51
T 92.53 4.79 97.16 1.69 78.91 8.63 92.81 3.37

TABLE I: Accuracy and EER in %; Abbreviations used:
Wav2vec2 (W2V), WavLM (WV), Unispeech (US), XLS-R
(XR), Whisper (WP), MMS (MMS), x-vector (XV), ECAPA
(EP), Wav2vec2-emo (W2V-emo), TRILLsson (T); The abr-
reviations used here are kept same for Table II

Pairs ASV CFAD

Concat TRIO Concat TRIO

A↑ EER↓ A↑ EER↓ A↑ EER↓ A↑ EER↓

W2V + WV 94.31 7.69 95.97 7.62 88.79 4.89 94.28 4.61
W2V + US 92.55 8.34 94.85 7.58 85.25 9.28 91.39 8.85
W2V + XR 95.64 8.73 97.14 7.69 93.86 7.95 94.13 8.63
W2V + WP 96.79 7.56 95.96 7.59 94.01 8.94 93.59 7.94
W2V + MMS 94.60 7.62 96.28 6.28 89.97 8.55 93.54 8.51
W2V + XV 96.21 7.36 95.17 7.39 86.54 7.49 89.73 7.37
W2V + EP 93.08 6.59 95.25 7.14 86.21 9.54 92.62 7.56
W2V + W2V-emo 92.85 6.48 96.64 6.59 88.67 8.58 92.47 7.58
W2V + T 97.50 5.86 98.21 5.08 95.85 6.08 96.23 5.89

WV + US 86.79 6.22 88.57 4.93 78.61 9.05 89.28 8.19
WV + XR 85.91 5.30 87.32 4.78 91.59 8.79 91.68 7.54
WV + WP 93.46 6.76 95.35 5.04 93.66 8.89 95.73 7.71
WV + MMS 90.31 6.40 92.39 4.97 90.55 8.01 93.23 8.59
WV + XV 94.89 5.49 94.72 4.30 90.27 8.81 93.79 8.69
WV + EP 93.84 5.06 94.29 5.87 93.21 9.81 93.85 7.29
WV + W2V-emo 88.69 4.99 93.51 4.29 94.67 8.63 94.89 7.63
WV + T 95.81 4.55 95.16 4.33 95.29 7.86 95.21 7.21

US + XR 89.28 5.36 84.61 5.23 79.20 8.11 84.62 7.06
US + WP 91.59 6.04 93.82 5.27 81.82 9.24 85.06 7.29
US + MMS 90.55 5.22 92.38 4.51 89.63 7.99 91.50 5.72
US + XV 92.29 5.54 97.63 4.69 88.26 8.14 92.72 5.85
US + EP 91.97 5.66 94.27 4.76 87.72 8.39 93.50 6.53
US + W2V-emo 92.32 5.49 94.93 4.47 90.28 8.06 92.85 6.25
US + T 93.52 4.92 95.25 4.22 91.63 7.02 94.23 4.86

XR + WP 94.81 5.06 95.53 4.11 90.62 5.49 95.36 5.31
XR + MMS 94.59 5.72 95.83 5.14 92.36 6.52 94.82 5.17
XR + XV 94.27 4.95 95.37 5.35 90.89 5.30 93.81 5.52
XR + EP 93.51 4.92 94.43 4.26 91.76 5.87 92.29 4.49
XR + W2V-emo 93.84 5.29 94.11 4.64 93.83 5.19 94.08 4.21
XR + T 94.62 4.38 96.89 4.05 94.05 4.84 95.13 3.91

WP + MMS 93.59 4.93 94.44 4.48 92.52 6.29 92.89 4.96
WP + XV 95.13 5.31 96.01 4.29 95.11 5.19 97.16 4.14
WP + EP 93.81 4.89 94.06 4.21 93.66 4.81 92.28 4.23
WP + W2V-emo 94.26 4.73 95.24 4.02 92.98 4.51 94.08 3.85
WP + T 94.89 3.95 95.31 3.24 95.21 4.09 97.52 3.09

MMS + XV 96.89 3.84 97.51 3.53 93.53 5.27 94.48 4.61
MMS + EP 95.67 3.18 96.11 2.96 91.13 3.59 92.34 3.38
MMS + W2V-emo 96.91 3.08 97.86 2.93 92.89 4.19 93.82 3.91
MMS + T 97.17 2.84 98.21 2.72 93.86 3.53 94.28 3.01

XV + EP 97.16 4.24 98.04 4.15 94.22 4.21 95.68 4.03
XV + W2V-emo 97.25 4.31 98.14 4.01 95.14 4.63 96.55 4.14
XV + T 98.38 0.36 99.56 0.19 97.28 1.29 99.04 0.95

EP + W2V-emo 87.61 8.53 89.93 7.21 76.28 10.64 79.94 8.28
EP + T 92.28 2.10 94.81 1.83 79.24 7.61 82.38 5.53

W2V-emo + T 97.39 0.45 97.56 0.39 96.38 1.49 97.16 0.99

TABLE II: Accuracy and EER in %

(a) MMS (b) TRILLsson

Fig. 2: t-SNE Plots for CFAD

Fig. 3: Confusion Matrix for CFAD using TRIO
(x-vector + TRILLsson)

ability to capture source-specific paralinguistic cues, which
are crucial for distinguishing synthetic speech sources. This
validates our hypothesis that paralinguistic SPTM represen-
tations will be the most effective for STSGS attributing to
their paralinguistic pre-training. Among all the other SPTMs,
speaker recognition SPTMs (x-vector and ECAPA) showed
comparatively good performance. This suggests that their
pre-training for speaker recognition tasks enhances their
ability to capture source-specific cues, contributing to im-
proved performance in STSGS. Additionally, we observe that
monolingual SPTMs reports the lowest performance for both
the datasets showing its inability to capture source specific
cues. Overall, the CNN models showed better performance
than its FCN counterparts. We also plot the t-SNE plots
of raw representations of MMS and TRILLsson in Figure
2. We observe better cluster across the source classes for
TRILLsson and this supports our obtained results and further
amplify the credibility of the proposed hypothesis.

Table II presents the results of fusion of various SPTMs
representations. We use concatention-based fusion as the
baseline fusion technique. We keep the same network for
concatenation-based fusion technique as the proposed frame-
work, TRIO. However, we remove the gated mechansim,
CCA loss and self-attention refinement block. We keep the
training details as same as for experiments with TRIO. Our
results indicate that fusion of representations through TRIO
outperforms the baseline fusion technique, demonstrating its
effectiveness in integrating diverse SPTM representations.
Notably, the best performance across both the datasets was
achieved by fusing x-vector and TRILLsson representations
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using TRIO, highlighting the complementary nature of these
representations. Further, we observe that fusion of TRILLs-
son with speaker recognition and multilingual SPTMs shows
comparatively good performance than fusion of monolin-
gual SPTMs with each other. Overall, fusion of SPTMs
representations improved performance than the performance
with individual representations. We also plot the confusion
matrices of CNN trained with TRIO with fusion of x-vector
and TRILLsson in Figure 3.
Comparison with SOTA: We compare our best performing
model TRIO with x-vector and TRILLsson with previous
SOTA work [13]. They reported accuracy and EER of 98.91%
and 0.26% on ASV, while for CFAD, they reported 99.01%
and 1.07%. While we report accuracy and EER: 99.56%
and 0.19% on ASV, 99.04% and 0.95% on CFAD. This top
performance shows that our work sets the new SOTA for
STSGS.

V. CONCLUSION

In our study, we show the effectiveness of utilizing par-
alinguistic SPTMs representations for STSGS. By capturing
source-specific paralinguistic cues, these representations out-
perform representations from various other SOTA SPTMs.
Further, we propose TRIO, a novel framework for fusion of
representations. By integrating TRILLsson and x-vector rep-
resentations through TRIO, we show topmost performance
surpassing individual SPTMs representations and baseline
fusion methods as well as report SOTA results in STSGS
compared to previous SOTA work. Our findings serve as a
valuable reference for future studies in selecting appropriate
SPTMs representations for STSGS and highlight the potential
of combining SPTMs representations for further enhancing
STSGS.
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