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Abstract—Zero-shot voice conversion is a technique that alters
the speaker identity of an input speech to match a target
speaker using only a single reference utterance, without re-
quiring additional training. Recent approaches extensively uti-
lize self-supervised learning features with K-means quantization
to extract high-quality content representations while removing
speaker identity. However, this quantization process also elimi-
nates fine-grained phonetic and prosodic variations, degrading
intelligibility and prosody preservation. While prior works have
primarily focused on quantized representations, quantization
residuals remain underutilized and deserve further exploration.
In this paper, we introduce a novel approach that fully uti-
lizes quantization residuals by leveraging temporal properties
of speech components. This facilitates the disentanglement of
speaker identity and the recovery of phonetic and prosodic details
lost during quantization. By applying only K-means quantization
and linear projections, our method achieves simple yet effective
disentanglement, without requiring complex architectures or
explicit supervision. This allows for high-fidelity voice conversion
trained solely with reconstruction losses. Experiments show that
the proposed model outperforms existing methods across both
subjective and objective metrics. It achieves superior intelli-
gibility and speaker similarity, along with improved prosody
preservation, highlighting the impact of our Linear Disentangler
module.

Index Terms—voice conversion, self-supervised learning, quan-
tization, linear disentanglement

I. INTRODUCTION

Zero-shot voice conversion (VC) aims to transform the
speaker identity of a source speech into that of an arbi-
trary target using only a single utterance, without additional
training. Generating high-fidelity converted speech requires
a distinct disentanglement of content-related and speaker-
specific components while preserving intelligibility, prosody,
and speaker similarity.

Self-supervised learning (SSL) models [1–3] have gained
significant attention in VC research as they are trained to
encode latent speech representations. The resulting SSL fea-
tures have been shown to linearly predict various speech
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attributes [3–5], suggesting that key components of speech
are linearly separable. This separability underpins the design
of our linear disentanglement module.

Over the past few years, zero-shot VC performance has
been greatly enhanced by integrating SSL features with tech-
niques such as diffusion models [6], conformer-based archi-
tectures [7], normalizing flows [8], explicit supervision like
prosodic labels [7, 9], and the use of external speaker en-
coders [8, 9], within a disentanglement module. Nevertheless,
these approaches typically rely on complex deep architectures,
resulting in increased model size and computational overhead.

One key property of SSL features is that nearby features
share phonetic information [10, 11]. Leveraging this property,
K-means quantization (KQ) has been widely adopted as a
strong content encoder in various VC models [7, 9, 12].
This process effectively removes speaker information while
capturing essential content representations.

However, quantization eliminates fine-grained phonetic and
prosodic variations, referred to as speaking variations, leading
to intelligibility degradation and poor prosody preservation.
Existing models struggle to reconstruct these lost details,
suggesting that quantization residuals are worth exploring
further.

We propose QR-VC, a novel zero-shot VC model that
leverages quantization residuals and the temporal properties
of speech components to construct a simple yet effective
architecture. Our model disentangles phonetic content, speaker
identity, and speaking variations using only K-means quan-
tization and linear projection layers. This approach enables
high-fidelity VC relying solely on reconstruction losses, with-
out requiring explicit supervision or complex modules. In
particular, the proposed Linear Disentangler module, com-
posed of time-invariant and time-variant linear bottlenecks,
addresses the limitations of quantization by restoring fine-
grained speaking variations, even with a small codebook.
Through extensive experiments, we demonstrate that QR-
VC outperforms existing methods in terms of intelligibility,
speaker similarity, prosody preservation, and naturalness. Our
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(a) QR-VC

(b) Linear Disentangler

Fig. 1. Overview of QR-VC. (a) Overall architecture. (b) Detailed structure
of the Linear Disentangler module.

results highlight the importance of quantization residuals
and validate the effectiveness of a linear disentanglement
framework in zero-shot VC. Audio samples are available at
https://simyoungjun.github.io/QR-VC-DEMO/

II. METHOD

A. Overview

QR-VC consists of a WavLM [3]-based encoder, a Linear
Disentangler, and a HiFi-GAN [14] decoder. The key improve-
ment lies in leveraging quantization residuals to disentangle
speaker identity and speaking variations through a linear
structure. This approach preserves fine-grained prosodic and
phonetic details while ensuring speaker similarity.

B. Encoder and Quantizer

The encoder extracts SSL features S from the 6th layer of
WavLM given a speech input X , defined as:

S = [s1, s2, ..., sT ] ∈ R1024×T . (1)

where T denotes the number of frames. Previous studies
have demonstrated that these features, in particular, retain rich
phonetic, prosodic, and speaker information [5, 10].

To obtain a discrete content representation Q, we apply K-
means quantization using a codebook E:

E = {e1, e2, ..., eK} ∈ RK×1024. (2)

where K is the number of codebook entries. Each frame st is
mapped to the nearest entry:

qt = arg min
ek∈E

∥st − ek∥22, Q = [q1, q2, ..., qT ]. (3)

Quantization removes speaker identity while preserving essen-
tial linguistic content. However, fine-grained speaking varia-
tions, such as phonetic and prosodic details, are also lost.

C. Linear Disentangler

To recover these lost details, we introduce a disentanglement
mechanism that decomposes the quantization residual R:

rt = st − qt, R ∈ R1024×T . (4)

This quantization residual R preserves fine-grained phonetic
and prosodic details, along with speaker information, as shown
in Figure 2. The disentangler further separates these com-
ponents into time-invariant speaker identity and time-varying
speaking variations.

1) Speaker Identity Extraction: Since speaker identity is
generally consistent across an utterance, we extract it by
computing the temporal average of R:

Ravg =
1

T

T∑
t=1

rt. (5)

This removes time-varying fluctuations while preserving time-
invariant speaker identity characteristics.

2) Speaking Variation Compensation (SVComp): To isolate
speaking variations V , we subtract the speaker identity vector
Ravg from each quantization residual frame rt. The result is
passed through a 1× 1 convolutional bottleneck layer, which
serves as a linear projection. This operation captures important
time-varying information:

V = Bottleneck(R−Ravg), vt ∈ RM . (6)

where M is the bottleneck dimension. The resulting rep-
resentation V retains prosodic and phonetic details while
suppressing speaker information.

3) Final Content Representation: The disentangled content
representation C is obtained by concatenating the bottle-
necked quantized representation Q′ with the extracted speak-
ing variations V . The two components have dimensions of
(1024 −M) × T and M × T , respectively, forming a 1024-
dimensional representation:

C = Q′ ⊗ V, ct ∈ R1024. (7)

This process compensates for the loss of speaking variations
in quantization, leading to improved content and prosody
preservation.

D. Decoder and Training Objective

The decoder G reconstructs the speech waveform X̂ using
HiFi-GAN [14] generator, taking the concatenated content C
and speaker identity Ravg as the input:

X̂ = G(C +Ravg). (8)
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TABLE I
SUBJECTIVE AND OBJECTIVE EVALUATION RESULTS FOR MOS, SMOS, WER, CER, EER, SECS, E-PCC, AND F0-PCC.

Model MOS↑ SMOS↑ WER(%)↓ CER(%)↓ EER(%)↓ SECS↑ E-PCC↑ F0-PCC↑

SSR-VC [9] 2.97±0.17 3.04±0.16 11.80 4.64 18.6 0.725 0.701 0.692
SEF-VC [7] 3.98±0.14 3.41±0.15 7.57 2.47 16.6 0.707 0.708 0.657
Phoneme Hallucinator [13] 3.81±0.18 3.76±0.13 10.78 4.76 12.8 0.743 0.793 0.716
DDDM-VC [6] 3.69±0.20 4.03±0.18 12.05 5.19 8.0 0.791 0.685 0.685
kNN-VC [10] 2.78±0.15 3.68±0.19 37.58 20.81 4.0 0.798 0.622 0.628

QR-VC (Ours) 4.14±0.12 4.27±0.13 5.57 2.07 5.0 0.815 0.885 0.719

The model is trained with a combination of adversarial losses
Ladv(G) and Ladv(D) for the decoder G and the discrimi-
nator D, a feature matching loss Lfm, and mel-spectrogram
reconstruction loss Lmel from HiFi-GAN:

LG = Ladv(G) + λfmLfm + λmelLmel,

LD = Ladv(D).
(9)

Additionally, to improve computational efficiency and enhance
model generalization, we randomly extract segments of la-
tent representations and corresponding audio segments from
ground truth raw waveforms as training targets.

E. Inference

During inference, the model converts speech by replacing
the speaker representation. Given a source utterance and a
single target utterance, the disentangler extracts content Csrc

from the source and speaker identity Stgt
avg from the target. The

decoder then generates the converted waveform X̂conv:

X̂conv = G(Csrc +Rtgt
avg). (10)

III. EXPERIMENTS
A. Experimental Setups

We use the LibriSpeech dataset [15], specifically the train-
clean-100 subset for training, which consists of 100 hours
of speech, and the test-clean subset for evaluation, which
includes 5.4 hours of speech from 40 speakers. All audio is
downsampled to 16 kHz. Preprocessing settings include FFT,
window, and hop sizes of 1280, 1280, and 320, respectively.
KQ is applied using mini batch k-means [16] with a batch size
of 2048 and K = 256 clusters. The speaking variations V is
reduced to M = 8 dimensions, and the bottlenecked quantized
representation Q′ has a dimension of 1016. The length of the
randomly extracted segments, as defined in section II-D, is 28.
The encoder is frozen during training, while other modules
are optimized with AdamW with β1 = 0.8, β2 = 0.99, weight
decay λ = 0.01, and an initial learning rate of 2 × 10−4,
decaying by a factor of 0.999 each epoch, with a batch size
of 32.

B. Baseline Methods

The proposed method is compared against several state-of-
the-art zero-shot VC approaches. SSR-VC [9] employs Hu-
BERT with a 100-codebook KQ as the encoder with external

speaker encoder and incorporates a pitch predictor with a
dedicated loss function. SEF-VC [7] integrates HuBERT with
a 2000-codebook KQ and a conformer-based network, incor-
porating a supervised prosody predictor to enhance prosody
modeling. kNN-VC [10] utilizes WavLM 6th layer features,
replacing each source feature with the average of its nearest
neighbors in a target utterance using k-nearest neighbors
(kNN) regression. Phoneme Hallucinator [13] extends kNN-
VC by incorporating a VAE-based architecture to generate
synthetic target-matching features, improving phonetic cover-
age in zero-shot scenarios. DDDM-VC [6] employs WavLM
features alongside a diffusion-based network for disentangling
speaker identity and content information.

C. Evaluation Metrics

We conduct both subjective and objective evaluations. In
the subjective evaluation, 50 participants rate naturalness and
similarity on a 5-point scale using the mean opinion score
(MOS) and similarity mean opinion score (SMOS), with 95%
confidence intervals. Experiments are conducted on 20 unseen
speakers from the LibriTTS test set. For the objective evalua-
tion, we used 6 metrics. Intelligibility was assessed via word
error rate (WER) and character error rate (CER) calculated
with a Whisper-based ASR model1 [17]. Speaker similarity
was measured with equal error rate (EER) and speaker em-
bedding cosine similarity (SECS) using a pre-trained speaker
encoder, Resemblyzer2. Prosody preservation was evaluated
with the Pearson correlation coefficient (PCC) [18] for both
F0 (F0-PCC) and energy (E-PCC), where higher PCC values
indicate better prosody preservation. For evaluation, 1000 ut-
terances were randomly selected from the Librispeech test set,
and 500 unseen-to-unseen converted utterances are generated.

IV. RESULTS

A. Comparison with Baselines

Table I presents the subjective and objective evaluation
results comparing the proposed method with baseline models.
The proposed model achieves the lowest WER of 5.57% and
CER of 2.07%, demonstrating superior intelligibility. It also
obtains the highest speaker similarity, with a SMOS of 4.27
and a SECS of 0.815, and shows strong prosody preservation

1https://github.com/openai/whisper
2https://github.com/resemble-ai/Resemblyzer
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Fig. 2. Objective evaluation of reconstructed speech from different feature
representations.

with an F0-PCC of 0.719 and an E-PCC of 0.885. Additionally,
the MOS results indicate the best naturalness. These results
confirm that QR-VC enables high-fidelity zero-shot voice con-
version, preserving both content and prosody while enhancing
speaker similarity. This validates that the Linear Disentangler
ensures distinct separation of speech components, preventing
interference or information leakage.

B. Feature Representation Analysis

We conduct a speech reconstruction task using representa-
tions derived from SSL features to evaluate their ability to
recover the original waveform. This experiment assesses how
well various speech components are preserved in the recon-
structed speech, explicitly analyzing the information retained
by each representation. Figure 2 presents the objective evalu-
ation of reconstructed speech using various feature represen-
tations, including SSL features S, quantized representation Q,
quantization residual R, bottlenecked quantized representation
Q′, speaker identity Ravg, and speaking variations V .

SSL features S encode rich phonetic, prosodic, and speaker
information, resulting in high intelligibility and speaker sim-
ilarity. In contrast, quantized representation Q effectively
removes speaker identity while preserving essential linguistic
content, but also eliminates speaking variations, degrading
prosody and content preservation. The quantization residual R
retains fine-grained phonetic and prosodic details, along with
speaker identity, suggesting its potential as a valuable feature
for speech processing.

The combination of Q + Ravg significantly improves the
EER, confirming that Ravg successfully captures speaker
identity. Moreover, it enhances reconstructed speech quality,
reducing the WER. The combination of Q′+V +Ravg achieves
the best trade-off among intelligibility, prosody preservation,
and speaker similarity. These results also validate the effec-
tiveness of the Linear Disentangler’s ability to separate key
speech components while preserving each of them.

Fig. 3. Comparison of QR-VC models with and without speaking variations
compensation across different codebook sizes.

C. Effect of Speaking Variations Compensation (SVComp)

Fig. 3 shows the effect of SVComp across different code-
book sizes. As the codebook size decreases, the performance
gap between models with and without SVComp increases,
suggesting that preserving fine-grained phonetic and prosodic
details becomes increasingly difficult with lower quantization
resolutions. Despite this, the model with SVComp consistently
achieves lower WER while maintaining higher prosody con-
sistency, as evidenced by the E-PCC and F0-PCC.

D. Ablation Studies

An ablation study is conducted to evaluate the contribution
of each component in the proposed method, as shown in
Table II. Removing SVComp (w/o SV Comp) results in a
substantial increase in WER while reducing F0-PCC and E-
PCC, confirming its importance in preserving intelligibility
and prosody. Eliminating the bottleneck layer in SVComp
(w/o bottleneck) slightly improves intelligibility and prosody
preservation but degrades speaker similarity, demonstrating
its role in suppressing speaker information. Replacing the
proposed speaker representation Ravg with an external speaker
embedding [19] (external spk emb), in the absence of
SVComp due to distribution mismatch, leads to a higher EER,
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TABLE II
OBJECTIVE EVALUATION RESULTS OF ABLATION SYSTEMS.

Model WER(%)↓ EER(%)↓ E-PCC↑ F0-PCC↑

Ours 5.57 5.0 0.885 0.719
-w/o SVComp 12.93 4.4 0.676 0.668
-w/o bottleneck 4.09 8.8 0.903 0.729
-external spk emb 8.55 22.6 0.836 0.664

indicating that the proposed method more effectively captures
speaker identity.

These results validate the importance of each component in
the proposed framework, demonstrating their critical role in
preserving intelligibility, prosody, and speaker similarity.

V. CONCLUSION

This paper proposes QR-VC, a novel zero-shot voice con-
version method that leverages quantization residuals in a
linear disentanglement framework. By exploiting the temporal
properties of speech components, the model disentangles lin-
guistic content, speaker identity, and speaking variations using
only K-means quantization and linear projections. This design
enables high-fidelity voice conversion relying exclusively on
reconstruction losses. Experiments show that QR-VC outper-
forms baselines in terms of naturalness, intelligibility, speaker
similarity, and prosody preservation. Ablation studies confirm
the importance of residual-based speaker representation and
the bottleneck structure in disentangling speech components.
Evaluations across codebook sizes highlight the effectiveness
of the speaking variation compensation module, especially
under low-resolution quantization. Future work includes uti-
lizing the model’s simplicity for real-time and on-device voice
conversion.
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