Diff-DEQ: Differentiable Dynamic Equalization for
Studio-Quality Speech Processing

Parakrant Sarkar, Permagnus Lindborg
SoundLab, School of Creative Media, City University of Hong Kong, Hong Kong SAR, China
parakrant.sarkar @my.cityu.edu.hk, pm.lindborg @cityu.edu.hk

Abstract—We present Differentiable Dynamic Equalization
(Diff-DEQ), a fully differentiable deep learning framework for
speech equalization and enhancement to achieve studio quality
for audio post-production tasks. Unlike fixed-rule equalization
methods, it adapts spectral components dynamically, respond-
ing to input signal variations to attain precise and content-
aware spectral shaping. The model combines a FiLM-modulated
Temporal Convolutional Network (TCN) and a Bidirectional
Gated Recurrent Unit (BiGRU) to predict per-band equalization
parameters with audio feature-based conditioning for improved
adaptability. We have trained the model in a self-supervised
manner that eliminates the need for paired input-target data.
We evaluate its performance using objective metrics on Diff-DEQ
and parametric equalization (PEQ) across LibriTTS, DAPS, and
VCTK datasets and non-intrusive speech quality assessment for
subjective evaluation. Our results show that Diff-DEQ enhances
speech intelligibility and perceived quality, making it well-suited
for audio post-production.

Index Terms—equalization, dynamic equalization, differential
digital signal processing, audio production

I. INTRODUCTION

Speech equalization (EQ) is a vital tool in audio post-
production, used to shape the tonal balance of speech for
improved clarity and intelligibility [1]. It plays a key role in
producing studio-quality audio for broadcast, communication
systems, and assistive listening devices. With the rise of
podcasting [2], online content creation, and remote communi-
cation, there is growing demand for automated EQ tools that
enhance speech without requiring expert knowledge creating
a low barrier of entry for novice users. Traditional approaches
like parametric EQ [3] and graphic EQ [1] rely on fixed
gain settings across frequency bands and often require manual
tuning. However, the highly variable nature of speech across
speakers, recording environments, and noise conditions limits
the effectiveness of such static methods.

To address these challenges, we introduce Differentiable
Dynamic Equalization (Diff-DEQ), a fully differentiable end-
to-end deep learning framework that dynamically adapts spec-
tral components in response to input signal characteristics.
Diff-DEQ is designed for adaptive speech equalization, en-
hancement, and audio mastering tasks, ensuring optimal tonal
balance in professional audio production and making high-
quality speech accessible to a broader range of users, espe-
cially novice or non-expert users.
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A. Comparison of Parametric and Dynamic Equalization

We conducted a small experiment comparing rule-based
parametric equalization (PEQ) and dynamic equalization
(DEQ) on a speech sample of approximately three seconds
with sampling rate of 24kHz. The PEQ implementation was
used from the dasp-pytorch toolkit!, while the DEQ
implementation was developed as part of this work. A detailed
explanation of our DEQ framework and its methodology is
provided in Section II. The Fig. 1 compares the frequency
response of rule-based DynamicEQ (DEQ) and ParametricEQ
(PEQ) applied to a speech signal. Both of them use the
same EQ parameters. The DEQ (red line) closely follows the
target response (black dashed line), particularly in the mid
and high-frequency regions, whereas the PEQ (blue dashed
line) deviates significantly. In the / kHz — 10 kHz range, PEQ
struggles to match the target response, leading to spectral
inconsistencies. DEQ provides a smoother transition with
fewer abrupt gain changes, especially around 3 kHz — 6 kHz,
a crucial region for speech intelligibility. Additionally, DEQ
maintains a slight boost above [0 kHz, improving speech
clarity and preserving high-frequency details that PEQ fails
to capture. These results demonstrate that adaptive, signal-
aware equalization in DEQ is more effective than the static
adjustments of PEQ, allowing for a more natural and balanced
spectral response. This motivated us to develop a Diff-DEQ
a fully differentiable deep learning framework for automatic
equalization tasks.
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Fig. 1. Frequency Response of comparison of rule-based DynamicEQ and
ParametricEQ

'https://github.com/csteinmetzl/dasp-pytorch/

EUSIPCO 2025



B. Related Work

Automatic equalization has been a key area of research, with
a strong focus on EQ matching, where equalizer parameters
are automatically adjusted to match the spectral characteristics
of a reference signal. Traditional EQ matching approaches
[4] have been widely used in intelligent audio production
tasks, either on isolated stems (e.g., vocals, instruments) or on
full multi-track mixtures [1], [5]. Early deep learning-based
approaches explored end-to-end equalization models. For ex-
ample, [6] proposed a CNN-based model that approximates
target equalization without explicitly estimating filter transfer
functions. Later, differentiable signal processing techniques
enabled neural parametric equalization (PEQ), where IIR
biquadratic (biquad) filters are integrated into deep learning
architectures [7]-[9]. These works leveraged the Differentiable
Digital Signal Processing (DDSP) framework [10], allowing
direct optimization of spectral differences between predicted
and target frequency responses. Most of these methods used
perceptually meaningful loss functions to improve EQ param-
eter prediction accuracy.

Recent research has explored neural dynamic range com-
pression (DRC) that adaptively controls loudness and dy-
namics using neural models. [11] introduced an efficient
deep learning model for loudness control, demonstrating the
effectiveness of neural-based dynamic range processing. Addi-
tionally, [9] proposed DeepAFX-ST, which integrates PEQ and
DRC in a differentiable signal chain. In NDMP [12], authors
presented a six-band neural-driven multi-band processor that
applies cascaded parametric equalization followed by band-
wise dynamic range compression in a fully differentiable
pipeline. This approach supports real-time and offline audio
mastering, but the EQ and compression stages remain sequen-
tial rather than jointly adaptive.

Despite these advancements, a unified framework for dif-
ferentiable dynamic equalization (DEQ) remains largely unex-
plored. Most prior works treat equalization and dynamic range
compression as separate processes rather than joint operations.
In this work, we propose Diff-DEQ, which integrates per-
band parametric equalization with dynamic control, enabling
adaptive spectral shaping that adjusts both frequency response
and dynamic range in a fully differentiable framework.

II. METHODOLOGY

This section describes the design of Diff-DEQ, a fully differ-
entiable dynamic equalization system that integrates paramet-
ric equalization, trainable crossover filtering, and differentiable
dynamic range control.

A. Dynamic Equalization

Diff-DEQ performs adaptive dynamic equalization by pro-
cessing the input signal across multiple frequency bands. We
adopt a six-band structure, similar to the PEQ framework in
[9]. Here, each band undergoes independent equalization and
dynamic range processing. The frequency bands are defined
during training using a trainable crossover mechanism that

helps the model learn optimal band divisions based on the
input signal characteristics.

1) Linkwitz-Riley Crossover Filtering: The input signal is
split into frequency bands by applying the designed Linkwitz-
Riley filters in the time domain, which are implemented as
cascaded second-order Butterworth filters by following [13]:

Yiow,i(n) = LPF;[z(n)] (1)
Unigh,i(n) = HPF;[z(n)] ()

where LPF;[-] and HPF;[-] denote filtering with the i-th
low-pass and high-pass Linkwitz-Riley filters, respectively,
whose coefficients are derived from the following z-domain
transfer functions:
. by + blz_l + b22_2
T 14 a1z7 4 agz2
. by — blz_l + b22_2
T 14 a1z F agz2
The filter coefficients by, b1, b2, a1, as are computed based on
the desired crossover frequency and sample rate, as described

earlier. All filtering is performed in the time domain using
these coefficients.

HLPF(Z) (3)

Hypr(2) “4)

B. Per-Band Equalization and Dynamic Range Processing

Each frequency band in the Diff-DEQ system is processed
with its own set of equalization and dynamic range control pa-
rameters. Specifically, we apply parametric equalization (PEQ)
[7] to adjust the gain in each band based on the input’s spectral
content, using biquad filters to enable precise and flexible
frequency shaping. Alongside this, dynamic range control
(DRC) [14] is applied within each band using a differentiable
feed-forward compressor implemented via t orchcomp?.

We parameterize each band’s EQ and DRC independently to
allow localized control, and they are jointly predicted by the
model to ensure coherent global behaviour. The compressor
operates using root mean square (RMS) level estimation, adap-
tive gain computation, and smooth attack-release dynamics to
avoid artefacts. This unified per-band approach enables Dift-
DEQ to adaptively shape the spectral balance and control dy-
namic range across the frequency spectrum, while preserving
phase continuity.

III. MODEL ARCHITECTURE

In this section, we describe the architecture of the proposed
Diff-DEQ model. Our model is inspired by [9] and consists of
three main components: a FiLM-Modulated Temporal Convo-
lutional Network (TCN), a Bidirectional Gated Recurrent Unit
(BiGRU), and a Multi-Layer Perceptron (MLP), as shown in
Figure 2. The model takes two inputs: the raw audio features
x, and an auxiliary conditioning vector z that encodes global
characteristics of the signal, such as loudness, MFCCs, and
spectral centroid. The FiLM conditioning vector z is first
passed through a small MLP to produce layer-wise scaling

2https://github.com/DiffAPF/torchcomp
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Fig. 2. Overview of the proposed Diff-DEQ model. The model takes in the audio signal x and conditioning vector z, and predicts dynamic equalization

control parameters through a FiLM-modulated TCN, BiGRU, and MLP stack.

and bias parameters (v, 3). The TCN is composed of 8§ FILM-
modulated convolutional blocks with exponentially increasing
dilation factors {1, 3,9, 27}, allowing it to capture both short
and long-term spectral dependencies. Each block applies a 1D
convolution (kernel size 5), followed by PReLU activation and
batch normalisation. The FiILM mechanism applies adaptive
modulation to each layer’s activations, enabling content-aware
feature extraction tailored to the conditioning vector z. The
output of the final TCN block is passed through a BiGRU,
which models temporal dependencies and ensures smooth
parameter transitions across frames. The bidirectional struc-
ture supports context-aware estimation and accommodates
variable-length inputs. A global average pooling (GAP) layer
is used to summarize the temporal dynamics into a fixed-
size vector. The MLP maps this aggregated representation
to dynamic equalization parameters: gain, Q-factor, threshold,
ratio, attack, release, and makeup gain. A sigmoid activation
ensures these outputs stay within valid operational ranges.
Trainable Crossover Mechanism: Diff-DEQ employs train-
able Linkwitz-Riley crossover filters to adaptively split the
input audio into frequency bands using learned cutoff frequen-
cies. Both the crossover points and per-band DEQ parame-
ters are predicted jointly, enabling signal-dependent spectral
partitioning and precise dynamic control for each band. This
architectural combination was chosen for its ability to balance
real-time performance, temporal consistency, and interpretabil-
ity. TCNs provide a scalable and parallelizable structure for
local-to-global feature modelling, FILM enables task-aware
conditioning, and BiGRU stabilizes time-dependent outputs.

IV. IMPLEMENTATION

In this section, we describe the training and evaluation
of our proposed model. We train two separate models: one

for Dynamic Equalization (DEQ) and another for Parametric
Equalization (PEQ). Both models follow the same training
pipeline.

A. Dataset and Preprocessing

We train Diff-DEQ using the train-clean—-360 subset
of LibriTTS [15], consisting of 360 hours of speech sampled
at fs = 24 kHz. We use a 90/5/5 split for training, validation,
and testing. To assess generalization, we evaluate our models
on additional datasets, including DAPS [16] and VCTK [17],
which contain diverse speakers, recording environments, and
microphone types.

Each input signal is paired with a reference signal, but
instead of relying on predefined input-target pairs, we adopt
a self-supervised training strategy. The input is generated by
applying randomly sampled DEQ parameters to the reference
signal, simulating real-world variations in automatic equaliza-
tion. This approach allows the model to learn DEQ parameter
estimation without requiring ground-truth labels. Additionally,
we introduce random gain adjustments within a range of £24
dB to enhance robustness. The model is trained on fixed-
length audio segments of 70972 samples (=~ 2.95s at 24 kHz).
Frames with silent or low-energy content are excluded, where
silence is defined as an amplitude threshold of 1e —4 and low-
energy frames as having energy below 0.01. All input signals
are peak-normalized to ensure uniform dynamic range across
training.

B. Training Procedure

We use a hybrid loss function consisting of a Multi-
Resolution Short-Time Fourier Transform (STFT) loss [18]
and an LI loss. The STFT loss captures spectral differences
between the predicted and reference signals, ensuring spectral
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fidelity, while the L1 loss enforces waveform-level accuracy.
The model is trained using the Adam optimizer with a
learning rate of 1e—4, which decays using a cosine annealing
scheduler over 200 epochs. We use a batch size of 16, and
training is performed on randomly sampled segments from
the dataset. We used RTX4090 GPU with 24GBVRAM with
intel 19-14900KF cpu in training.

C. Inference and Evaluation

In the inference, we apply the same preprocessing pipeline
to generate the input signal as training. We evaluate both
DEQ and PEQ models using objective and subjective met-
rics. Objective metrics include PESQ, STOI, LUFS, and Mel
spectral distance measures etc. We provide the training code
and audio samples (for both DEQ and PEQ) at GitHub for
reproducibility.

V. RESULTS AND ANALYSIS

In this section, we briefly discuss the objective metrics to
evaluate our proposed DEQ with the PEQ model. Later, a non-
intrusive subjective test is carried out on the DEQ model.

A. Objective Evaluation

We have followed the objective metrics used in [9]. Ta-
ble T compares Diff-DEQ (deq) with Parametric EQ (peq)
across the LIBRI, DAPS, and VCTK datasets using various
objective metrics. PESQ and STOI scores indicate that PEQ
achieves slightly higher intelligibility and perceptual quality
across datasets. However, Diff-DEQ demonstrates a lower
Mean Squared Error (MSE) and Mel-Spectral Distance (MSD)
on most datasets, suggesting a better spectral match to the
reference signal. Notably, Diff-DEQ achieves lower LUFS
differences, meaning it preserves loudness characteristics more
accurately than PEQ. In terms of phase distortion, PEQ gen-
erally outperforms Diff-DEQ, exhibiting lower values across
datasets, indicating more phase coherence. However, Diff-
DEQ excels in transient preservation, across all the datasets,
where it retains sharper attacks compared to PEQ. Similarly,
the crest factor difference suggests that Diff-DEQ provides
more balanced dynamic range control. While PEQ achieves
slightly better spectral centroid accuracy, Diff-DEQ maintains
competitive performance while integrating adaptive spectral
shaping and dynamic compression within a single differen-
tiable framework. These results highlight the trade-offs be-
tween static PEQ and adaptive DEQ, showcasing Diff-DEQ’s
potential in content-aware equalization while preserving dy-
namic nuances.

B. Subjective Evaluation

To assess the perceptual quality of the enhanced speech, we
conducted a non-intrusive speech quality assessment (NISQA
v2.0) using the TorchMetrics framework [19]. We eval-
vated the predicted and target audio samples across the Lib-
riTTS, DAPS, and VCTK datasets, computing speech quality
metrics to compare Diff-DEQ’s performance against ground
truth recordings. The Fig. 3, Fig. 4, and Fig. 5 illustrate

the distribution of quality scores for the predicted and target
speech across all three datasets. The results indicate that
Diff-DEQ consistently produces high-quality outputs, closely
aligning with the ground truth reference signals.

Libri: Speech Quality Assessment: Predicted vs Target
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Fig. 3. Speech quality assessment results for the LibriTTS dataset.
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Fig. 4. Speech quality assessment results for the DAPS dataset.

VCTK: Speech Quality Assessment: Predicted vs Target
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Fig. 5. Speech quality assessment results for the VCTK dataset.

These results indicate that across all datasets, Diff-DEQ
achieves scores that are highly comparable to the target ref-
erences, demonstrating its effectiveness in maintaining speech
intelligibility, naturalness and minimal perceptual quality im-
plying studio-quality speech. As shown in Table I and Fig-
ures 3-5, Diff-DEQ consistently achieves these benchmarks
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TABLE I
COMPARISON OF DEQ AND PEQ ACROSS LIBRI, DAPS, AND VCTK DATASETS. PESQ, STOI, AND Transient Preservation FAVOR HIGHER VALUES,
WHILE LOWER VALUES ARE PREFERRED FOR OTHER METRICS. BOLDFACE HIGHLIGHTS THE BEST-PERFORMING MODEL FOR EACH METRIC AND

DATASET..
LIBRI DAPS VCTK
deq peq deq peq deq peq
PESQ 4.2897 4.4237 4.2898 4.5269 4.3294 4.5180
STOI 0.9877 0.9988 0.9851 0.9979 0.9730 0.9983
MSE 0.0672 0.0414 0.1877 0.1222 0.0737 0.0348
MSD 1.1790 1.3244 2.1177 2.2746 1.0258 1.0666
RMS Error 0.0340 0.0337 0.1328 0.1150 0.0188 0.0231
LUFS diff -5.8266 -6.6102 -11.3706 -13.2795  -0.0243  -3.2614
STFT Loss 1.2352 1.5126 2.1006 2.1257 1.0817 1.0718
Spectral Centroid Error 339.30 370.22 238.07 121.12 423.08 242.86
Spectral Bandwidth Diff.  0.0104 0.0158 0.0168 0.0117 0.0095 0.0100
Spectral Flatness Diff. 0.0362 0.0395 0.0255 0.0207 0.0459 0.0238
Phase Distortion 0.4715 0.1161 0.4930 0.0883 0.4793 0.1029
Transient Preservation 5.8366 2.8849 4.5725 22156 11.0627 1.1047
Crest Factor Diff. 0.2306 0.2489 0.6851 0.7792 0.1661 0.2276

across multiple datasets. These findings demonstrate the poten-
tial of Diff-DEQ to deliver studio-quality, professional-grade
speech enhancement for automated audio post-production.

VI. CONCLUSION

In this work, we introduced Diff-DEQ, a fully differentiable
deep learning framework for adaptive dynamic equalization.
It integrates adaptive spectral processing and dynamic range
control into a unified model through a FiLM-modulated TCN,
BiGRU-based temporal modelling, and an MLP-driven param-
eter estimation that helps the model to predict content-aware
equalization settings. The experimental results across LIBRI,
DAPS, and VCTK datasets demonstrate that Diff-DEQ effec-
tively preserves transient details, maintains loudness consis-
tency, and achieves better spectral matching, while offering a
fully differentiable and trainable approach to speech enhance-
ment achieving studio-quality for post-production workflows.
In future work, we will explore real-time deployment and fine-
tuning with perceptual loss functions further to enhance its
effectiveness and use this in a signal chain with other audio
effects. Also, we need to carry out subjective listening tests
with real users to get the feedback on Diff-DEQ model.
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