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Abstract—Recently, Longformer has been proposed to effi-
ciently handle long-range sequence text data and has demon-
strated state-of-the-art performance on various Natural Lan-
guage Processing (NLP) tasks. On the other hand, existing neural
vocoders struggle to balance computational efficiency and long-
dependency modeling. While Generative Adversarial Network
(GAN)-based vocoders are capable of generating high-quality
speech quickly, they face challenges in capturing long-range
dependencies. Especially in Indian languages, such as Gujarati,
where 14 vowel sounds can be spoken in various regional
dialects. In this context, we propose a novel vocoder, Swar, which
uses sliding window attention for high-quality speech generation
in Gujarati. The attention and diffusion-based vocoders are
unsuitable due to training and inference complexity, respectively.
Swar achieves a 4.51 Subjective Mean Opinion Score (SMOS)
on NVIDIA GTX 1080 8GB GPU. It generates 22.05 kHz audio
833.33 × times faster than real-time on an NVIDIA GTX 1650.
Since SMOS has reproducibility limitations, we evaluated using
the Pearson Correlation Coefficient (PCC), Perceptual Evaluation
of Speech Quality (PESQ), Short-Time Objective Intelligibility
(STOI), Modulation Spectra Distance (MSD), and Mel Cepstral
Distortion (MCD). to evaluate a comprehensive and robust
evaluation of Swar’s performance.

Index Terms—Longformer, Neural Vocoder, Generative Adver-
sarial Networks (GANs), Speech Prosody, Gujarati Language.

I. INTRODUCTION

Text-to-Speech (TTS) is used in various applications, such
as virtual assistants, content creation, and human-computer
interaction. Renowned TTS methods work in two phases:
(1) Text-to-Mel Spectrogram Prediction [1], [2] and (2) Mel
spectrogram-to-waveform generation (vocoder) [3]–[5]. In sec-
ond phase, traditional vocoders, such as WORLD [6], analyze
speech signals and extract key acoustic parameters e.g., pitch
(i.e., fundamental frequency, F0), formants, and spectral en-
velope. These vocoder often produce robotic and unnatural
speech. In 2016, Oord et al. [7] proposed the autoregressive
(AR)-based vocoder WaveNet, which model the waveform
from a Mel spectrogram by capturing complex character-
istics in the speech wave. Successively, non-autoregressive
vocoders (NAR), flow-based [8], [9], GAN-based [10]–[13],
and diffusion-based models [14], [15] gives improved speech
generation quality while achieving speeds hundreds of times
faster than the real-time. However, each approach presents its
unique set of difficulties (or limitations). In particular, AR
models suffer from slow inference speed due to sequential
nature. while NAR models were faster but demonstrated re-
duced speech quality. Flow-based models improved quality but

required high computational resources. Similarly, diffusion-
based vocoders [14], [15], capable to generate high-quality
speech samples, however, require high-end GPU resources
for real-time inference. In contrast, the GAN-based vocoder
becomes a preferred choice due to its real-time capabilities
w.r.t. the speech quality and inference speed [10]–[13].

In 2017, the work proposed by Vaswani et al. [16] pro-
posed the attention mechanism in the transformer, which
revolutionized the NLP field. The self-attention mechanism
allows models to dynamically focus on different parts of
an input sequence, capturing contextual dependencies more
effectively than the traditional RNNs or LSTMs. However,
the use of self-attention increases complexity quadratically
with a sequence length of the (O(n2d)), makes it complex
for long sequences and limits real-world applications, and
still struggle with long sequences due to vanishing attention
weights over distant tokens. To address these challenges,
Longformer [17] was introduced as an efficient alternative
that reduces the second-order complexity of the self-attention
computation to the lower-order (O(nd)) using the local sliding
windows and global attention mechanism. Here, local attention
mechanism ensures that each token only attends to a fixed
number of nearby tokens, reducing computations while global
attention selectively allows key tokens to attend across the
entire sequence.

In this work, we introduce Swar- a Longformer-based GAN
vocoder designed especially for Gujarati (an Indian language)
while highlighting the following key contributions:

1) We propose a Longformer-based GAN vocoder, which
uses the sliding window mechanism, to focus on local
phonetic details as well as global prosodic features.

2) We successfully trained the Swar on the Gujarati lan-
guage (55.5 million speakers worldwide), without ex-
plicit regularization in either the generator or the dis-
criminator of GAN [18].

3) The earlier works were done heavily using subjective
measures, such as MOS. In the context of this work,
we believe the perceptual evaluation is not sufficient
for most noisy conditions and phonetic information
preservation and hence, we evaluated our samples using
objective measures, such as PCC, PESQ, STOI, MSD,
and MCD. These measures allow us to establish a strong
correlation with subjective evaluations while providing a
detailed assessment of speech quality. Samples available
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at website 1.

II. RELATED WORK

A. Why Gujarati Language?

Most speech vocoders are trained in English, French, and
Mandarin, which is challenging due to notable differences
in phonetic structures and prosody of these languages. As

TABLE I
COMPARATIVE ANALYSIS OF PHONEME, CONSONANT, AND VOWEL

COUNTS ACROSS LANGUAGES. AFTER [19].

Language Phonemes Consonants Vowels
Mandarin 35 26 9

French 35 21 14
English 44 24 20

Gujarati 57 32 25

shown in Table I, the Gujarati language contains 57 phonemes,
32 consonants, and 25 vowels, as compared to other lan-
guages, e.g., 44 phonemes in English, 35 in Mandarin, and
35 in French, which means many Gujarati phonemes, such
as retroflex, consonants, and nasalized vowels are missing in
pre-trained models, leads to pronunciation errors and phoneme
mismapping (i.e., wrong assignment), as model attempt to
replace unavailable sounds with the closest matches from their
training language phonemes. However, the phonotactic rules
and prosody patterns of Gujarati differ from those in English
and Mandarin, making speech synthesis audio unnatural with-
out proper training with Gujarati training data. The grapheme-
to-phoneme (G2P) is also a challenge due to the Gujarati
Abugida script, leading to the inaccurate phonetic transcript
in another language. The proposed vocoder is trained entirely
on the Gujarati dataset I, which covers the recording samples
from Kathiawar, North Gujarat, Kutch, and Central Gujarat,
where Gujarati is spoken with different accents and unique
pronunciation styles.

The word ’Swar’ originates from Sanskrit, where the term
’Svara’ refers to vowels, that are self-sounding. It originates
from the root, referring to vowels and intonations. Which plays
a fundamental role in speech production and perception. In
the context of signal processing, it refers to the pitch (F0) of
pronunciation and determines the meaning of words [20].

B. GANs Vocoders

The explicit density models demand high computational
costs due to explicit probability modeling, which made the
real-time inference challenging [21]. In contrast, implicit
density models offered high quality and fast inference with
limited resource conditions, making the GANs-based vocoder
a perfect choice for various real-world applications. Among
GAN vocoders [4], [10], [11], [22] several vocoders can be
considered due to their effectiveness on evaluation criteria,
such as speech quality, computational efficiency, robustness,
stability, accents, and prosody control. In 2019, MelGAN [4]

1https://iamshreeji-copy1.github.io/SWAR Gujarati Vocoder/

and Parallel WaveGAN [10] optimised speed over speech qual-
ity for waveform generation. HiFi-GAN [11] performed 167.9
× times faster than the real-time factor without diminishing
speech quality and naturalness. Another work, Multi-band
MelGAN [23], uses multiple frequency bands to significantly
improve the generation speed with high-quality output. At the
same time, UnivNet [24] proposed resolving the generalization
across different datasets while offering stability and reliability
as compared to other models. In 2022, BigVGAN set a
benchmark by proposing a zero-shot universal vocoder, trained
at the scale of 112M parameters [22]. This large-scale training
helps it to generate high-frequency sounds, such as birds and
audio effects, which contain electronic music with loud drums
even with out-of-distribution scenarios.

C. Attention Mechanism

The classic work on ”Attention Is All You Need” introduced
the transformer architecture, which replaced the Recurrent
Neural Network (RNN) with a self-attention structure for the
sequential processing of text [16]. The transformer revolution-
ized the NLP, by making deep learning more scalable and
effective through parallel training. Subsequently, this archi-
tecture inspired authors, such as Li et al. [25] to apply it to
audio tasks, specifically in the first phase of the TTS systems
to generate a Mel spectrogram. Wu et al. [26] were the first to
address long-range dependencies of input text by developing a
transformer prosody model for expressive synthesized speech.
However, this model struggled to maintain control over accents
and prosody.

III. SWAR: PROPOSED ARCHITECTURE

To the best of our understanding and belief, no prior work
integrates Longformers into the vocoder models and removes
the challenges regarding accents and linguistic influences. In
the proposed work, sparse attention (as shown in Fig. 1)
uses character embeddings to process phoneme sequences and
combines local sliding windows and global attention to handle
long sequences. Given an input character embedding X, the
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Fig. 1. Comparison of raw speech waveform generation between (a) The
proposed Swar, and (b) the traditional GAN architecture.

Longformer attention can be defined as follows: each character
embedding attends to a fixed window size w around it instead
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of all character embeddings in the sequence. The attention for
each head i is computed as,

Headi = Attention(XWQ
i , XWK

i , XWV
i , w), (1)

where WQ
i ,WK

i ,WV
i are the learnable projection matrices for

Query, Key, and Value. Certain preselected embeddings have
global attention, meaning they attend to all possible characters,
and all embeddings can attend back to them. Thus global
attention becomes,

Headglobal
j = Attention(XWQ

j , XWK
j , XWV

j ). (2)

In the case of multi-head self-attention consists of both lo-
cal (sliding window) and global attention. So final attention
computation is given by:

Y = Concat(Head1, ...,Headh)WO +X, (3)

where WO is the learned transformation matrix applied after
concatenating all attention heads. The attention scores are
computed as follows:

Attention(Q,K, V ) = SoftMax
(
Q ·KT

√
dk

)
· V, (4)

where dk is the dimensionality of the key vector.

A. Sliding Windows

For an input sequence S = {S1, S2, . . . , Sn} (where St

represents a speech frame or phoneme embedding at time
step t), then attention mechanism is modified to restrict each
element to attend only within a fixed window size w. So, the
single attention head is computed by:

Headi = Attention(StW
Q
i , St−w:t+wW

K
i , St−w:t+wW

V
i ),

(5)
where, St is the current frame or phoneme embedding,
St−w:t+w represents the local neighbourhood around St,
and WQ

i ,WK
i , and WV

i are learned projection matrices for
queries, keys, and values. Each speech frame computes atten-
tion only within its window instead of the entire sequence,
which means scaled dot product attention becomes:

Attention(Q,K, V ) = SoftMax
(
Q ·KT

√
dk

)
· V, (6)

where, Q = StW
Q (query at time t), K = St−w:t+wW

K ,
V = St−w:t+wW

V , dk is the key dimensionality. So each
speech frame attends only to its local context, avoiding un-
wanted computational overhead. Indirectly, Longformer uses
multiple attention heads to capture different aspects of local
dependencies, So, Multi-Head Attention Output will become,

Y = Concat(Head1, ...,Headh)WO + S, (7)

where h is the number of attention heads, WO is the learned
output transformation matrix, and S is the residual connection
to preserve original speech features.

IV. EXPERIMENTS

A. Dataset Used

For this study, we used the IndicVoices-R Gujarati dataset,
which includes a total of 8.94 hours of speech data from
45 speakers with an average duration of 9.74 seconds per
utterance. The dataset was collected from the various districts
of Gujarat State, India. The primary reason behind choosing
this dataset is its ability to capture ground-level linguistic
diversity. Unlike scripted speech datasets, it includes extem-
pore conversations, making it more representative of natural
spoken language rather than text being read aloud (i.e., read
speech). Initially, the datasets’ raw audio was sampled at
44 KHz. We pre-processed (e.g., resampling) and converted
paired representations of Mel spectrograms and corresponding
audio waveforms using Wav2Mel 2.

B. Model Parameter Configuration

Proposed models use residual blocks, to preserve essential
features and reduce the artifacts in the generated waveform,
where it increases the resolutions of the generated spectrogram
using a multi-stage transposed convolution with upsample
rates [8,8,2,2], and a corresponding kernel size of [16,16,4,4]
progressively. The training was conducted with 128 Mel bands
spectrograms with a hop size of 256 and a Windows size of
1024. The Swar model is capable of capturing a frequency
range of 0 Hz to 8000 Hz. The convolution layers were
designed with kernel sizes [3,7,11], each paired with a dilation
rate of [1,3,5] for each kernel. The batch size is limited to 8
on GTX 1080 ARMOR, learning rate of 0.0002 with a decay
factor of 0.999, and momentum parameters β1 and β2 were
0.8 and 0.99, respectively.

C. Setup

All experiments were executed on an ubuntu-powered work-
station equipped with a 12thgeneration Intel Core i7 processor,
16GB of RAM, and an MSI GTX 1080 ARMOR 8GB
graphics card with 2TB external SSD for storage.

V. RESULTS AND DISCUSSION

To assess the synthesized quality of synthesized samples,
we conducted the following experiments. Specifically, 20
generated utterances were randomly selected from the out-of-
distribution dataset. The previously proposed methods were
generally trained in languages other than Gujarati, mainly in
English. This remains the primary constraint of our evaluation
paradigm. In this setting, we observed that some models show
a generalized ability to an avoidable rate, when trained on
a multi-speaker dataset. However, they still fail to generate
perfect pronunciation per Gujarati phonemes, which should
be acceptable.

2https://github.com/rhasspy/wav2mel.git

518



A. Subjective Measures

To analyze this difference, we conducted a SMOS evalua-
tion, according to ITU-T P.800 standard, by ensuring sufficient
test duration and phonetic balance in test material [27]. All
10 subjects were naı̈ve listeners with no prior training in
speech or audio processing (e.g., age group of 19-28 years,
gender distribution: 8 male, 2 female). Notably, all were native
speakers of Gujarati, ensuring they could reliably judge the
naturalness and intelligibility of synthesised Gujarati speech.
None of the participants reported any hearing impairments or
known biases toward the speech samples. They were asked to
rate the best-fit option in comparison to the reference audio
on a scale of 1 to 5 via TestVox web app [28], where 5
represents excellent (clear and natural), 4 is good (acceptable),
3 is fair (noticeable degradation), 2 is poor (notable distortion),
and 1 is bad (unacceptable or unintelligible). Each listener
was assigned a score based on the perceived quality, and we
calculated the arithmetic mean (average) score of all ratings
the listeners gave as per eq. 8. As shown in Table II, 95%
Confidence Interval (CI) means ’true SMOS score is expected
to lie with 95% certainty.’

SMOS =
1

N

N∑
i=1

Si. (8)

B. Objective Measures

We evaluated speech quality using four objective measures,
such as PCC [29], PESQ 3 [30], STOI [31], MSD [32], and
MCD [33]. Higher PESQ and STOI scores demonstrate better
speech quality and intelligibility, and a lower MCD and MSD
score shows reduced distortion and a closer match to the
Ground Truth (GT) speech sample.

TABLE II
COMPARISON OF OBJECTIVE AND SUBJECTIVE MEASURES (REPORTED
WITH 95% CI), ON SYNTHETIC AND GT FOR INDICVOICES-R DATASET

Method PCC
(↑)

PESQ
(↑)

STOI
(↑)

MSD
(↓)

MCD
(↓)

SMOS
(↑)

GT - - - - - 4.62
MelGAN [4] 0.18 0.59 0.12 76.82 267.12 1.86
P.WaveGAN
[10]

0.01 1.98 0.56 45.62 143.61 2.02

HiFi-GAN [11] -0.00 2.22 0.84 37.09 93.61 3.09
BigVGAN [22] -0.34 4.38 0.99 11.33 10.72 4.39

IndicVoices-R
Swar
(Proposed)

0.01 2.64 0.93 25.20 35.66 4.51
(±0.12)

1) PCC: It measures the linear association between two
signals x and y, with values ranging from 1 (perfect positive)
to -1 (perfect negative) [29]. It is computed as:

r =

∑N
i=1(xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2
√∑N

i=1(yi − ȳ)2
. (9)

2) PESQ: It measures speech quality. Higher PESQ ratings
indicate high speech quality. In particular,

PESQ = 4.5− 0.1dsym − 0.0309dasm. (10)

3https://pypi.org/project/pesq/

3) STOI: It is widely used to evaluate speech intelligibility
in noisy or degraded conditions. i.e.,

STOI =
1

N

N∑
t=1

∑F
f=1(xf (t)− x̄f )(yf (t)− ȳf )√∑F

f=1(xf (t)− x̄f )2
√∑F

f=1(yf (t)− ȳf )2
.

(11)
4) MSD: It calculates the likeness or disparity between two

signals through modulation spectra. As given in Eq.(12),

MSD =

√√√√ 1

N

N∑
i=1

(
s(y)ti − s(y)t̂i

)2

. (12)

5) MCD: It is used to quantify the variation among two
sets of Mel cepstral coefficients, i.e.,

MCD =

√∑N
t=1

(√∑D
i=1(A(t, i)−B(t, i))2

)2

N
.

(13)

Except for the PCC score, As mentioned in Table II, Swar
remarkably surpasses the performance of traditional vocoders,
such as MelGAN [4], Parallel WaveGAN [10], and HiFi-
GAN [11] across all the metrics, by capturing local and long-
range speech dependencies in waveform prediction. We noted
that BigVGAN [22] achieves the best overall performance
in objective evaluations, closely followed by Swar, which
achieves a PESQ of 2.64 (as per eq. 10), STOI of 0.93 (as
per eq. 11), an MSD of 25.20 (as per eq. 12), and an MCD
of 35.66 (as per eq. 13) but as per the SMOS results, the
listers rated BigVGAN [22] samples lower regardless of its
strong objective performance, this variation is possible due to
perceived excessive smoothing, and unconditioned accents in
BigVGAN [22], which leads listeners to choose the generated
samples from the Swar model, as it produces more expressive
and natural-sounding speech outputs compared to BigVGAN.
In short, Swar maintains a balance between objective and sub-
jective quality by giving importance to perceptual evaluation,
leading to a more natural and intelligible speech synthesis
experience as compared to existing vocoders.

VI. FUTURE DIRECTIONS

Our future improvements will focus on enhancing prosody
control, optimizing computational efficiency for real-time ap-
plication, and integrating mode-diverse linguistic datasets,
especially for Gujarati. Without any doubt, this research lays
a strong foundation for future advancements in Indic language
vocoders, to address challenges of low-resource language,
where existing non-Indic pre-trained models struggle with
phoneme mismapping and lack of naturalness. This work
provides the robust foundation for future advancements in
Indic language vocoders, which are low-resource and complex
to synthesize from the existing non-Indic pre-trained models,
which miss the important phonemes and mispredict the Indic
phonemes with need more naturalness and intelligible low-
resource and phonetically rich languages, we evaluated with
subjective and objective evaluations for better judgement in
terms of naturalness and expressiveness.
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VII. CLOSING REMARKS

In this paper, we introduced Swar, a longformer-based
GAN vocoder for Gujarati speech synthesis. By integrating
the sliding windows mechanism with a GANs-based vocoder,
Swar captures local phonetic details and long-range dependen-
cies, in order to improve speech quality and intelligibility for
Gujarati. The subjective and objective evaluation shows that
the proposed work surpasses traditional vocoders by achieving
comparable results to BigVGAN in terms of subjective met-
rics. Also, listeners preferred Swar synthesized speech due to
its expressiveness and naturalness, highlighting the importance
of perceptual quality in vocoder.
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