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Abstract—As noise masking is central to reducing fatigue in
open-plan offices, identifying which elements of speech contribute
to intelligibility is essential. This paper employs phoneme-level
noise masking techniques to examine how the intelligibility of
consonants and vowels degrades under noisy conditions, and to
determine which aspects of the speech signal are truly compro-
mised. We introduce and compare two methods: one that applies
noise between all phoneme boundaries and another that respec-
tively applies noise to consonants and vowels, based on phoneme-
specific signal-to-noise ratios. Evaluations on Harvard sentence
corpora, using both automatic speech recognition systems and
objective intelligibility metrics, reveal that although aggregated
word error rates indicate significantly higher degradation for
consonants compared to vowels, the direct phoneme error rate
analysis does not reflect this disparity. This suggests that the
marked decline in word-level intelligibility may not be solely due
to differences in phone class, but also to other factors such as
ASR contextual compensation mechanisms.

I. INTRODUCTION

Noise pollution greatly undermines our quality of life. In
office environments, it not only triggers stress that hampers
performance but also breeds annoyance and disrupts social
interactions [1]. Background speech, in particular, can be
extremely distracting, reducing overall productivity [2]. While
active noise cancellation methods are effective at diminishing
steady, predictable sounds, they often falter when faced with
the fluctuating frequencies of human speech [3]. As a result,
noise generation machines have emerged as an alternative;
these devices mask speech intelligibility by elevating the
overall noise floor. However, they often result in excessively
high sound levels due to neglecting the varying contributions
of individual phonemes [4].

Typically, noise maskers are set to achieve a 0dB signal
to noise ratio (SNR). In practice, this often corresponds to
a noise level around 45dB(A), which simulates interfering
speakers positioned a few meters away. This level is chosen
as a compromise between effectively masking speech and
maintaining a comfortable ambient sound [5]. However, this
approach has notable drawbacks: it elevates overall noise
levels, potentially contributing to long-term stress, annoyance,
and cognitive fatigue [6], [7].

Additionally, research in speech perception further reveals
that although intelligibility begins to decline significantly as
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the SNR lowers, masking is not significant until about —12 dB,
as the residual speech cues remain detectable [8]. Supporting
this observation, the study by Henriques et al. [9] on phrase
recognition thresholds in noise (PRTN) demonstrated that
normal-hearing individuals typically recognize approximately
50% of speech stimuli at an average SNR of about —8dB,
with individual thresholds ranging from —4dB to —13dB.
Similar investigations have reported PRTN values between
—2dB and —12dB, further indicating that even under adverse
conditions, some speech cues remain audible [10]. Conse-
quently, noise generation machines operating at a 0 dB SNR
may not fully conceal speech, as they leave enough residual
cues for partial intelligibility under focused listening. This
residual intelligibility may contribute to increased cognitive
load and fatigue, consistent with findings that listening in
noisy environments—such as the typical SNRs found in school
classrooms—imposes considerable cognitive demands [11].

At a more granular level, research indicates that different
phonemes exhibit varying susceptibility to noise masking. For
example, consonants are generally more vulnerable to noise
interference than vowels, primarily due to their lower energy
and shorter duration [12]. Moreover, the nature of the noise
(such as steady-state versus fluctuating noise) and its spectral
characteristics can differentially affect various speech compo-
nents [13]. Building on this, we believe that this phoneme-
specific variability offers promising avenues for developing
more sophisticated targeted speech masking strategies.

In light of these findings, this paper leverages phoneme-level
noise masking techniques to investigate how noise degrades
phoneme types differently, and to identify which aspects of the
speech signal are truly compromised under noisy conditions.
Our objective is to understand whether the observed phoneme
sensitivity to noise is solely due to differences between
phoneme classes or if the ability of contextual compensation
mechanisms—plays a significant role.

In our evaluation, automatic speech recognition (ASR)
systems served as a proxy for speech intelligibility, supported
by prior work showing strong correlations with human listen-
ing tests [14], [15]. To complement this, we used objective
metrics targeting different intelligibility aspects: Short-Time
Objective Intelligibility (STOI) [16], which measures temporal
and spectral similarity between clean and degraded speech;
Speech Distortion Ratio (SDR); and the Hearing-Aid Speech
Perception Index (HASPI) [17], which models auditory pro-
cessing to assess noise impact on quality.
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Fig. 1: Three experiments: masked speech is processed by (1) an ASR system for WER, (2) the ASR output aligned with
clean speech via MFA for PER, and (3) a phone recognizer for direct PER computation.

II. METHODOLOGY

Our study is structured into three blocks displayed in Figure
1, each contributing a perspective on how noise application on
phoneme level affects speech intelligibility and recognition.

The first part of the study involves measuring the Word
Error Rate (WER) of sentences that have been subjected to
various noise conditions. This measurement provides a broad,
macro-level assessment of how added noise decreases overall
intelligibility by considering whole-word accuracy; even a
single misrecognized phoneme can result in an error for an
entire word. By analyzing WER, we explore the hypothesis
that certain phonemes may contribute more significantly to the
perceptual quality of speech, and their masking might lead to
greater declines in recognition performance.

The second part uses the Allosaurus phone recognizer
[18], which has no language model and relies solely on
acoustic cues, to measure phoneme error rates (PER). This
allows us to examine how noise affects individual sounds and
whether consonants or vowels are more impacted. Since earlier
research suggests consonants are more vulnerable [12], we
test if they show higher error rates under noisy conditions
compared to vowels or complete phonemic set. Unlike word
error rate (WER), which may aggregate small phoneme errors
at a word level, PER gives a clearer view of how noise
disrupts speech at the sound level, helping to identify which
phonemes are inherently more susceptible to noise and if they
contribute to the overall degradation of speech intelligibility
disproportionately.

The third part of the study compares phoneme error rates
(PER) from two systems: a basic phone recognizer and
an Automatic Speech Recognition (ASR) system. For the
ASR system, transcripts are aligned with clean speech using
the Montreal Forced Aligner (MFA) to get the phoneme
sequences. This comparison is important because it shows
how phoneme-level errors differ between a system that only
recognizes sounds and one that also uses a language model.
It helps to reveal whether language modeling compensates for
or amplifies the impact of noise.

III. EXPERIMENTAL DESIGN

We conducted our experiments using two English corpora.
The first corpus consists of Harvard sentences spoken by a

female native British English speaker and sampled at 48kHz
[19]. Tt is considered for its phonetic balance and widespread
use in speech intelligibility research. The second corpus is Lib-
riSpeech, a large-scale audiobook corpus commonly employed
in training ASR systems, sampled at 16kHz. Each utterance is
masked using speech-shaped noise (SSN) across a spectrum
of signal-to-noise ratios ranging from highly adverse to nearly
noise-free environments.

Our approach incorporates two phoneme-aware masking
strategies. In the first, Phoneme-Based Masking, the speech
signal is segmented into individual phonemes, and SNR is
calculated and applied between their boundaries obtained with
MFA. This method differentiates between vowels and conso-
nants by calculating and applying SNR adjustments separately
for each category with no noise on the other. In the second
approach, Level-Based Masking, the SNR for each phoneme
is computed and applied between phoneme boundaries on all
phonemes. This yields a tailored noise profile that adapts to
the varying loudness of different phonemes.

To assess the impact of masking methods on speech intel-
ligibility, we also use Uniform Masking, a baseline method,
to evaluate ASR performance under standard conditions. In
total, we assess the performance of 12 ASR systems. Eight of
these systems are known to have been trained on LibriSpeech,
while the remaining four were trained on alternative datasets.
We consider those two classes separately to offer an out-of-
domain perspective and explore biases potentially introduced
toward the corpus content. WER was calculated for each SNR
category (ranging from —40 dB to 40 dB in 10dB increments).

This experimental design allows us to examine the influence
of dataset familiarity on WER-based evaluations. Furthermore,
it provides insights into the differential sensitivity of vowels
and consonants to noise masking and their respective roles in
speech intelligibility.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. Bias

We first study the ASR behavior using different corpora.
Table I presents average WER values calculated on both
LibriSpeech and Harvard corpora at an SNR of 0dB using
SSN as the noise masker. Models trained on LibriSpeech
consistently demonstrate superior performance on LibriSpeech
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Corpus Not Trained on Librispeech

0.789
0.767

Trained on Librispeech

0.649
0.460

Harvard
Librispeech

TABLE I: Average WER calculated on Librispeech and Har-
vard corpora for Models trained and not trained on Lib-
rispeech.

corpus, achieving a substantially lower WER of 0.460, com-
pared to 0.767 for models not trained on this corpus. On the
Harvard corpus, the difference is narrower with LibriSpeech-
trained models attaining a WER of 0.649 versus 0.789 for
models not trained on Librispeech. This performance gap
highlights a clear bias favoring familiar data which probably
does not reflect a human behaviour. This suggests that in-
domain evaluations might overestimate a model’s true capa-
bility. Thus, these findings emphasize the necessity of incorpo-
rating evaluations on out-of-domain datasets to provide a more
comprehensive assessment of masking strategy effectiveness.
Henceforth, to avoid the bias introduced by Librispeech trained
models on Librispeech corpus, we will continue our evaluation
by considering the Harvard corpus.

B. Keyword Reception Threshold vs.
Thresholds

Human Reception

100
—e— Fastformer ~ —e— Other ASR

50

25

Keyword Reception Threshold

-3
SNR (dB)

Fig. 2: ASR-based Keyword Reception Threshold (KRT),
calculated by measuring the percentage of correct content
words in the transcripts—excluding pronouns, prepositions,
and articles—using a bag-of-words approach.

The following will compare the human Speech Reception
Threshold (SRT) graph presented by Aubanel et al., 2020 [20],
with ASR performance in order to identify the ASR system
that best matches human speech intelligibility under noise
conditions. To facilitate this comparison, we use KRT as an
ASR-based equivalent to the SRT, providing a more direct
alignment with human intelligibility benchmarks.

Although ASR performance broadly follows similar trends
to human intelligibility on the Harvard corpus, there remains
a difference between SRT and ASR outcomes. Notably, even
the closest ASR system—Fastformer—Ilags behind human

performance. Figure 2 illustrates this discrepancy. For ex-
ample, while humans transition gradually from near-chance
to near-perfect understanding—reaching approximately 75%
recognition around —3 dB —Fastformer maintains KRT near
40%, reaching the same 75% recognition only around 0dB.
These differences emphasize that although ASR-based mea-
sures capture general trends, they may not fully reflect the
true perceptual impact of noise. Nevertheless, staying mindful
of the consistent 3 dB shortfall relative to human performance,
we will rely on Fastformer as our ASR baseline for the
upcoming experiments, complemented by additional metrics
(STOI, HASPI, SDR) to ensure a thorough intelligibility
evaluation.

C. Metrics Comparison
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Fig. 3: Comparison of average inverted WER across SNR for
uniform masking approach, plotted alongside HASPI, STOI
and SDR.

Figure 3 compares different intelligibility metrics, including
WER, across varying noise conditions. HASPI and WER show
the greatest intelligibility loss at extremely negative SNRs,
reflecting the impact of severe noise. Notably, HASPI aligns
more closely with WER trends than STOI, likely because it
accounts for psychoacoustic processes that mirror actual listen-
ing conditions, thereby providing a more faithful intelligibility
estimate than STOI ! in moderate SNR environments. It is
important to note that here the horizontal axis is showing the
masker gain which is the overall SNR level to which the signal
was adjusted. Additionally, in this and the following experi-
ments, Word Error Rate (WER) has been inverted—referred
to as inverted WER (iWER)—for clearer comparison, where
a value of 1 indicates higher intelligibility and lower values
reflect poorer recognition performance.

D. Masking Strategy Impact

Figure 4 illustrates the impact of different masking strategies
on speech intelligibility across a range of SNRs.

'Tt is important to note that while the speech was sampled at 48kHz, STOI
only reflects intelligibility up to SkHz. As such, any masking effects in higher
frequencies are not captured by this metric, which may limit the interpretation
of results involving high-frequency noise components.
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Fig. 4: iWER of level-based, uniform masking approaches, and
phone-based with noise applied only on consonants or vowels
under varying SNRs.

To begin, both level-based’> and uniform masking yield
low iWERs at extremely negative SNRs (—40dB to —20dB),
but they diverge significantly from about 0 dB onward. The
level-based approach shows a faster increase in iWER as the
noise conditions improve, raising above the uniform method
throughout the mid-range SNRs. Thus, indicating a better
intelligibility reduction using the uniform approach.

Within phone-based masking, where noise was applied
selectively to either consonants or vowels, both phoneme
classes exhibit low iWER in extreme noise conditions (—40 dB
to —20dB), with consonants generally exhibiting lower er-
ror rates—likely due to their shorter duration and higher-
frequency bursts. As the SNR improves beyond —10 dB, both
curves rapidly increase and effectively converge, indicating
minimal performance difference at moderate to high SNRs.

To evaluate whether the differences observed under extreme
noise conditions (from —40 dB to 0 dB) are statistically signif-
icant, we performed a paired t-test comparing iWERs for con-
sonants and vowels. The t-test yielded a t-statistic of 2.8854
with a p-value of 0.0432, which is below the conventional
significance threshold of p < 0.05. This indicates that the
iWER for consonants is significantly lower than for vowels,
implying that consonants have higher error rates and are more
susceptible to noise degradation in extreme conditions.

E. Consonant and Vowels, CER and VER

In order to assess the impact of phoneme-level masking on
WER, we computed PERs separately for consonants (CER)
and vowels (VER) on the Harvard corpus. Specifically, we
compared only the insertions, deletions, and substitutions
relevant to each phoneme class, using a phone recognizer’s
output against the clean transcripts. As shown in Figure 5, con-
sonants consistently exhibit slightly higher error rates—Ilikely
due to their shorter durations and higher-frequency compo-
nents—while vowels recover more robustly at higher SNRs,
reflecting their stronger formant energy.

2The SNR for each phoneme is computed and applied between phoneme
boundaries on all phonemes, refer to Section III

0.9 —— \Vowels Consonants
0.8
0.7
i
> 0.6
kel
f =
o
205
o
0.4
0.3
0.2
—40 -30 —20 -10 0 10 20 30 40
SNR (dB)

Fig. 5: Comparison of CER and VER under uniform masking
across a range of SNRs.

However, the difference between CER and VER was not
statistically significant. This suggests that the observed degra-
dation in overall intelligibility is not solely attributable to
phonetic class differences but may also be influenced by
linguistic context or other factors. Furthermore, our findings
align with the HASPI and SDR data in Figure 4, reinforcing
that vowel-consonant differences are negligible. This suggests
that using other metrics over PER might have been sufficient.
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Fig. 6: Comparison of PER between a phone recognizer and
an ASR system across different SNRs.

F. Linguistic Context Impact on Phone Recognition

In this subsection we will examine PERs obtained from
ASR transcripts after aligning them with clean audio refer-
ences using MFA. This allows us to determine whether the
ASR system mitigates some phoneme-level errors through
contextual information. From Figure 6, the phone recognizer
consistently shows higher error rates thorough the high-range
SNRs than the ASR system. This does suggest that the ASR’s
additional modeling— most likely its language model—helps
it recover from or “fill in” some phoneme-level errors that
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the phone recognizer cannot. However, it does not strictly
prove that “context” is the sole factor. ASR systems differ
in acoustic modeling and training objectives as well, so their
better performance at moderate and high SNR could reflect
both acoustic and linguistic advantages.

V. DISCUSSION

This study investigated phoneme-level noise masking strate-
gies aimed at reducing speech intelligibility, with a focus on
understanding how errors accumulate at the word level and
whether these errors differ between consonants and vowels.
Our experiments revealed that, under extreme noise conditions,
the WER was significantly higher for consonants than for vow-
els. However, when directly examining phoneme error rates
(PER) obtained with a phoneme recognizer, we observed no
significant difference between the two phoneme classes. This
discrepancy suggests that, although consonants and vowels
exhibit similar error rates at the phoneme level, the aggregation
of phoneme errors at the word level (captured by WER)
disproportionately impacts consonants, creating an impression
of greater consonant vulnerability.

Furthermore, the analysis of PER obtained from ASR sys-
tems suggests that ASRs may be more effective at compen-
sating for vowel errors compared to consonant errors. Vowels,
characterized by their robust acoustic structure and prominent
formant energy, likely provide sufficient contextual cues for
the ASR’s language model to recover or “fill in” missing
information, thereby mitigating their impact on overall word
recognition. In contrast, consonants, which are transient and
acoustically less redundant, become more vulnerable to noise-
induced degradation, resulting in higher aggregated errors at
the word level. Hence, the interpretation of these findings is
that overall intelligibility degradation (as captured by WER)
may not be determined solely by phoneme classes.

These results underscore the complexity of phoneme-aware
noise masking: although phoneme-level measures like PER
may not capture significant differences between consonants
and vowels, the word-level performance clearly reflects the
cumulative detrimental effect of consonant degradation under
extreme noise. Consequently, our findings suggest that im-
provements in noise masking strategies should consider not
only isolated phoneme errors but also their combined effect
on overall speech intelligibility.

VI. CONCLUSION

By employing phoneme-level masking techniques and ana-
lyzing both word and phoneme error rates, this study demon-
strates that while consonants show greater degradation at the
word level, the differences at the phoneme level are not as
pronounced.

We believe these insights pave the way for improved
noise masking strategies by revealing that speech intelligibility
degradation is not solely driven by phoneme classes.
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