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Abstract—Source-filter HiFi-GAN (SiFi-GAN) is a neural
vocoder offering fast, high-quality voice synthesis with funda-
mental frequency (F0) controllability. However, SiFi-GAN takes
hand-crafted acoustic features from traditional signal processing
as input, causing some limitations, such as sound quality degra-
dation in F0 extrapolation. This paper proposes VAE-SiFiGAN,
which learns latent representations from Mel-spectrograms via
a variational autoencoder (VAE). The latent representations
learned through the probabilistic framework enable SiFi-GAN
to better model the stochastic components in speech signals,
achieving sound quality improvements in F0 modification. Fur-
thermore, to address the insufficient F0 controllability caused by
the entanglement of Mel-spectrograms and F0 information, we
propose to guide the latent representation learning process with
hand-crafted features less affected by F0 and used only during
training. Experimental results show that VAE-SiFiGAN achieves
superior F0 controllability compared to SiFi-GAN.

Index Terms—neural vocoder, variational autoencoder, source-
filter model, pitch control

I. INTRODUCTION

A neural vocoder [1]–[8] is a waveform generator based on
deep neural networks (DNNs), achieving remarkably higher
sound quality than conventional source-filter vocoders [9],
[10]. HiFi-GAN [8] is one of the most popular neural vocoders
due to its ability to balance sound quality with synthesis
efficiency. On the other hand, for practical use, vocoders
often need to also offer flexible control over the fundamental
frequency (F0), which is crucial for generating the desired
intonation and pitch. The fully data-driven manner of HiFi-
GAN tends to limit the controllability of F0. To address this
issue, Source-filter HiFi-GAN (SiFi-GAN) [11] incorporates
an F0-driven mechanism and source-filter theory into HiFi-
GAN, aiming to simultaneously achieve high speech quality,
fast synthesis, and F0 controllability.

Nonetheless, SiFi-GAN still suffers from several issues in
the context of practical applications. One key limitation is its
inability to reproduce the stochastic aspects of speech, such
as acoustic fluctuations and variances caused by the physical
speech production process, including the natural variability of
vocal-fold vibration and articulation where no two utterances
are exactly alike. This variability is essential for synthesizing
natural-sounding voices [12], [13]. Therefore, it is desirable
to develop vocoders incorporating a stochastic mechanism
to realize a one-to-many mapping from acoustic features to

waveforms and model these fluctuations. Many generative
adversarial networks (GAN)-based neural vocoders [6]–[8],
[14]–[16], including SiFi-GAN, utilize the GAN’s proba-
bilistic generative framework, yet they practically learn an
almost deterministic mapping from input features to wave-
forms, thus depending entirely on the acoustic features to
capture these variations. Additionally, many F0-controllable
neural vocoders [11], [15]–[18], including SiFi-GAN, employ
WORLD [10] features that are extracted deterministically
using signal-processing algorithms. Consequently, the combi-
nation of deterministic features and near one-to-one waveform
generation prevents the model from capturing the natural
variability in the input speech, limiting the ability to synthe-
size expressive waveforms. Moreover, this feature extraction
algorithm involves processing steps for which differentiable
implementations are not readily available, making it difficult
to incorporate the algorithm into end-to-end systems directly.
Furthermore, acoustic feature extraction algorithms based on
signal processing are generally noise-sensitive, which can lead
to degraded synthesis quality in real-world applications.

In this work, we propose VAE-SiFiGAN, which adopts
a variational autoencoder (VAE) [19] framework to learn
probabilistic latent representations. In contrast to the original
SiFi-GAN which takes WORLD features as input, VAE-
SiFiGAN extracts stochastic latent representations from the
input Mel-spectrogram, which offers flexibility to integrate
with end-to-end systems, and is thus capable of modeling
the uncertainty in speech, including fluctuations, while also
improving robustness against background noise. Furthermore,
to encourage F0-independence in the learned representations,
we propose an F0-removal mechanism, where we align the
posterior distribution of the VAE encoder with prior distribu-
tions defined by the WORLD features less affected by F0.
Experimental results show that our proposed VAE-SiFiGAN
demonstrates superior F0 control performance over SiFi-GAN.

II. BASELINE SOURCE-FILTER HIFI-GAN

In this section, we describe the baseline model, SiFi-
GAN [11]. In SiFi-GAN, the input features consist of Mel-
generalized cepstral coefficients (MGC) and band-aperiodicity
(BAP), extracted using WORLD analyzer [10] based on signal
processing.
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A. Source-filter networks

The SiFi-GAN generator is decomposed into the source-
network and filter-network connected in series. The source-
network is composed of upsampling and downsampling mod-
ules. Upsampling modules include transposed 1D convolu-
tional neural networks (CNNs) and quasi-periodic residual
blocks (QP-ResBlocks). Each QP-ResBlock comprises mul-
tiple iterations of Leaky ReLU [20], pitch-dependent dilated
convolution neural networks (PDCNNs) [14], [21], and 1D
CNN. Downsampling modules hierarchically receive an F0-
dependent sine wave, generated in the same manner as used
in Neural Source-Filter (NSF) [22]. The input features are pro-
gressively upsampled through the transposed CNNs and QP-
ResBlocks, while F0-dependent sine waves are simultaneously
fed to each upsampling layer via downsampling CNNs. In
order to extract the source excitation signal, the output of the
final QP-ResBlock is passed through Leaky ReLU and a 1D
CNN. Benefiting from this F0-driven architecture, the model
can enhance F0 controllability.

The filter-network is composed of transposed CNNs with
multi-receptive field fusion (MRF) modules, closely resem-
bling the HiFi-GAN [8] generator architecture. The key dif-
ference is that the final QP-ResBlock output from the source-
network is fed to each block through downsampling CNNs.
This cascade structure of the source network and the filter
network is essential for effectively capturing high-frequency
components of speech and improving F0 controllability.

B. Training with source excitation regularization loss

The training criteria for the SiFi-GAN follow HiFi-GAN;
however, in order to explicitly decompose the generator into
the source-network and the filter-network, a regularization
loss, as described in Equation (1) and [16], is applied to the
output of the source-network:

Lreg(G) = Ex,c

[
1

N
|| logψ(Ŝ)− logψ(S)||1

]
(1)

where x and c denote the ground truth speech and input
features; ψ and N denote the function that converts an
amplitude spectrogram to a Mel-spectrogram and the number
of dimensions of the Mel-spectrogram; Ŝ and S denote the
amplitude spectrum of the source excitation signal output by
the source-network and the residual spectrogram, respectively.
This residual spectrogram is obtained by extracting the spec-
tral envelope using CheapTrick [23] and by normalizing the
average power in each frame. The regularization loss ensures
that the output source excitation signal has a flat spectral
characteristic, like actual excitation signals that have not yet
been colored by the vocal tract.

The final loss function for the generator is thus defined as a
combination of an adversarial loss LG,adv, a Mel-spectral L1
loss Lmel, a feature-matching loss Lfm, and the regularization
loss Lreg, as shown in Equation (2):

LG = LG,adv + λmelLmel + λfmLfm + λregLreg (2)

where λmel, λfm, and λreg are loss-balancing hyperparameters.
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Fig. 1: Overview of VAE-SiFiGAN. mgc and mel denote
Mel-generalized cepstral coefficients concatenated with band-
aperiodicity and Mel-spectrogram, respectively.

III. PROPOSED METHOD: VAE-SIFIGAN
An overview of the proposed VAE-SiFiGAN is illustrated

in Fig. 1. Instead of using the original features (i.e., MGC and
BAP) from SiFi-GAN [11], we introduce learnable latent rep-
resentations extracted from Mel-spectrograms via the VAE en-
coder. In addition to the VAE encoder (i.e., posterior encoder),
we additionally incorporate a prior encoder as in VITS [24], a
text-to-speech model based on variational inference, to control
the posterior distribution.

A. Posterior encoder

We adopt the posterior encoder structure from VITS as
the encoder that extracts latent representations from Mel-
spectrograms. It consists of 1D CNNs and non-causal WaveNet
residual blocks [5], [25], enabling it to capture the long-term
dependencies of speech signals. Given the Mel-spectrogram
xmel as input, the posterior encoder yields a latent represen-
tation zmel. To enable flexible F0 control as in conventional
source–filter vocoders [9], [10], the F0 series extracted by an
F0 estimator is externally provided to the SiFi-GAN generator
in addition to zmel.

However, since Mel-spectrograms generally contain F0 in-
formation, zmel naturally retains some F0 cues. If zmel still car-
ries F0 cues that contradict the externally specified F0 values,
modifying the F0 can lead to conflicts, ultimately degrading F0

controllability [15], [17]. Therefore, an additional mechanism
is needed to remove any residual F0 content from zmel.

B. Prior encoder for F0 removal

To address the potential conflict described in section III-A,
we introduce the prior encoder that helps eliminate F0 infor-
mation from zmel. In line with SiFi-GAN, the prior encoder
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receives hand-crafted features with reduced F0 influence,
namely MGC and BAP, collectively denoted as xmgc. In
contrast to Mel-spectrograms, MGC+BAP features are nearly
independent of F0 due to their extraction algorithms [23], [26],
which are designed to remove F0 information as part of the
process. Therefore, the latent representation zmgc produced
by the prior encoder is expected to be almost free of F0

information. The prior encoder shares the same architecture
as the posterior encoder.

During training, the posterior encoder is regularized by the
prior encoder through Kullback-Leibler (KL) divergence loss,
which compels the Mel-based latent feature zmel to discard
F0 information. The prior encoder, in turn, is regularized
by a standard normal distribution N(0, I). Consequently,
the training objectives for these encoders are formulated as
Equations (3) and (4):

Lklmgc = KL[qθ(zmgc | xmgc) || N(0, I)] (3)
Lklmel = KL[qϕ(zmel | xmel) || qθ(zmgc | xmgc)] (4)

where θ and ϕ denote the parameters of the prior and posterior
encoders; qθ(zmgc | xmgc) and qϕ(zmel | xmel) denote the
posterior distributions of latent representations zmgc and zmel,
respectively.

The prior encoder is used only for guiding the posterior
encoder’s distribution to disentangle F0 information. After
training, inference relies solely on the posterior encoder (i.e.,
the Mel-spectrogram xmel and its corresponding latent repre-
sentation zmel). This design allows inference to rely exclu-
sively on Mel-spectrogram inputs, eliminating the need for
hand-crafted acoustic features such as MGC and BAP, while
maintaining robust F0 controllability.

C. Training criteria

Finally, we extend the SiFi-GAN training objective by
incorporating the KL divergence losses for both the posterior
and prior encoders, as defined in Equation (5):

LG =λklmgcLklmgc + λklmelLklmel + λmelLmel

+ λfmLfm + λregLreg + LG,adv
(5)

where λklmgc , λklmel , λmel, λfm, λreg are loss-balancing hyperpa-
rameters. In order to seamlessly leverage the complementary
properties of both latent representations, our method employs
a single generator that generates two separate speech recon-
structions from zmgc and zmel. Therefore, all loss terms except
Lklmgc and Lklmel are calculated based on the average of these
two outputs.

IV. EXPERIMENTAL EVALUATION

In this section, we demonstrate the performance of our
proposed method. We generated singing voices in the scenarios
of both copy-synthesis and F0 transformation.

A. Data preparation

Following the previous work [11], we used Namine Ritsu’s
database [27], which contains a collection of Japanese vocal
recordings from a single female singer. The dataset comprises
110 songs with a total duration of approximately 4.35 hours,
and the annotated F0 range spans from 100 to 1000 Hz. Each
song was further segmented into shorter phrases based on rests
indicated in the musical score.

For feature extraction, we used a fast Fourier transform
(FFT) size of 1024 and a 5-ms frame shift for all computa-
tions. The spectral envelopes, extracted using the CheapTrick
algorithm [23], were converted into 40-dimensional Mel-
generalized cepstral coefficients (MGC), while 3-dimensional
band-aperiodicity parameters (BAP) were obtained via the
D4C algorithm [26]. A 1024-point FFT with a Hanning win-
dow was applied to extract 80-dimensional Mel-spectrograms
(MEL), whose magnitudes were then converted to a loga-
rithmic scale. All acoustic features were normalized to zero
mean and unit variance before being fed into the model.
For F0 extraction, we applied the Harvest algorithm [28],
followed by interpolation and smoothing to obtain a one-
dimensional continuous F0 (cF0) [29]. The sine waves used in
the SiFi-GAN [11] generator were then synthesized from cF0

according to the generation method described in [22]. Note
that no voiced/unvoiced flag is used either as an input feature
or for sine wave generation.

B. Model details

We compared our proposed VAE-SiFiGAN with the follow-
ing baseline and ablation models:

• SiFi-GAN: Baseline vanilla SiFi-GAN vocoder, condi-
tioned on {MGC, BAP}. We set λmel = 45.0, λfm = 2.0,
and λreg = 1.0.

• VAE-SiFiGAN: Proposed model with the posterior and
prior encoders, conditioned on {MGC, BAP, MEL} dur-
ing training but used only {MEL} for inference. We set
λklmgc = 1.0, λklmel = 1.0, λmel = 45.0, λfm = 2.0, and
λreg = 1.0.

• w/o Prior: Proposed model without the prior encoder.
We set the prior distribution of the posterior encoder to
a standard normal distribution N(0, I).

We adopted the original architecture and training configuration
in [11] for SiFi-GAN. Both posterior and prior encoders have
the same architecture, with a hidden layer dimension of 192,
16 WaveNet residual blocks [5], [25], and a kernel size of 7.
Each encoder outputs 30-dimensional latent representations.
All models used the same UnivNet multi-period and multi-
resolution discriminators [30]. We trained all vocoders for
500k steps using the Adam [31] optimizer, with a mini-batch
size of 16 and a mini-batch length of 8400.

C. Objective Evaluation

To evaluate the F0 controllability of each model, we report
the root mean squared error (RMSE [Hz]) of the log-F0 and
the voiced/unvoiced classification error (V/UV [%]). Each
metric was evaluated using F0 modification ratios, which are
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Fig. 2: Results of objective evaluation.

multiplied by the original F0 values in Hz, from 0.5 to 3.0 in
increments of 0.25.

The results of the objective evaluation are presented in Fig.
2. In the F0 × 2.0 or higher conditions, w/o Prior model
exhibits a marked increase in RMSE. Additionally, as shown in
Fig. 3, w/o Prior fails to accurately reconstruct the harmonic
structure when F0 is heavily extrapolated. These observations
are presumably due to inconsistent F0 cues remaining in the
latent representations and the externally supplied F0 series,
thereby reducing its F0 controllability.

Compared with SiFi-GAN, VAE-SiFiGAN achieves lower
RMSE for most F0 scaling conditions, except at F0 × 0.5
and 3.0, suggesting that disentangling F0 information from
the latent representations plays a pivotal role in effective F0

control. Furthermore, VAE-SiFiGAN outperforms the other
two models in terms of V/UV performance across the F0

scaling conditions.

D. Subjective Evaluation

To evaluate the perceptual quality of the synthesized singing
voices, we conducted a five-point Mean Opinion Score (MOS)
test. In this test, we evaluated singing voices generated by copy
synthesis and those generated under F0 scaling conditions of
0.5 and 2.0. Twenty-two Japanese speakers participated in the
test, and each of them assessed 12 samples per method under
each F0 scaling condition.

The results of the subjective evaluation are presented in
Fig. 4. VAE-SiFiGAN and w/o Prior yield higher perceived
quality than SiFi-GAN under F0 × 0.5 and 2.0. Notably,
despite SiFi-GAN achieving a substantially lower RMSE than
w/o Prior under F0 × 2.0, its MOS is lower than that of w/o
Prior. We found that under the F0 × 0.5 and 2.0 conditions,
SiFi-GAN occasionally produces buzzy voices, suggesting that
relying solely on hand-crafted features extracted with signal
processing algorithms fails to capture certain spectral charac-
teristics. In contrast, VAE-SiFiGAN and w/o Prior randomly
sample their latent representations from the estimated latent
distribution on each occasion, and these latent representations
are helpful for achieving more robust speech generation even
under extrapolated F0 conditions.

Despite VAE-SiFiGAN considerably outperforming w/o
Prior on RMSE and V/UV, it only achieves a comparable
MOS score at F0 × 2.0. One plausible explanation is that
w/o Prior sacrifices some degree of F0 control for a more
natural-sounding output, reflecting a trade-off between F0

controllability and acoustic fidelity.
In VAE-SiFiGAN, although MEL is used as input, the

posterior encoder’s alignment with MGC+BAP-based latent
representations, which may contain feature extraction errors,
effectively forces the model to rely on MGC+BAP for final
speech reconstruction. This reliance can degrade overall sound
quality, suggesting that reducing dependence on hand-crafted
features while still preserving robust F0 control is a key
direction for future work.

V. CONCLUSION

In this study, we propose VAE-SiFiGAN, designed to extend
the applicability of SiFi-GAN by incorporating a learnable
latent representation derived from Mel-spectrograms together
with an F0 removal mechanism. Experimental results demon-
strate that VAE-SiFiGAN achieves superior F0 controllability
compared to conventional SiFi-GAN, which relies on hand-
crafted acoustic features. Future work includes further refining
the architecture to simultaneously ensure robust F0 control and
sound quality, verifying its robustness in noisy environments,
investigating its integration into end-to-end applications such
as SVS and TTS, and integrating a learnable F0 predictor to
enhance performance.

ACKNOWLEDGMENT

This work was partly supported by JST AIP Acceleration
Research JPMJCR25U5, Japan.

REFERENCES

[1] A. van den Oord, S. Dieleman, H. Zen, et al., “WaveNet: A Generative
Model for Raw Audio,” in Proc. SSW, 2016, p. 125.

[2] A. van den Oord, Y. Li, I. Babuschkin, et al., “Parallel WaveNet: Fast
High-Fidelity Speech Synthesis,” in Proc. ICML, 2018, pp. 3915–3923.

[3] N. Kalchbrenner, E. Elsen, K. Simonyan, et al., “Efficient Neural
Audio Synthesis,” in Proc. ICML, 2018, pp. 2415–2424.

[4] J.-M. Valin and J. Skoglund, “LPCNet: Improving Neural Speech Syn-
thesis Through Linear Prediction,” in Proc. ICASSP, 2019, pp. 5891–
5895.

[5] R. Prenger, R. Valle, and B. Catanzaro, “WaveGlow: A Flow-based
Generative Network for Speech Synthesis,” in Proc. ICASSP, 2019,
pp. 3617–3621.

[6] R. Yamamoto, E. Song, and J.-M. Kim, “Parallel WaveGAN: A fast
waveform generation model based on generative adversarial networks
with multi-resolution spectrogram,” in Proc. ICASSP, 2020, pp. 6199–
6203.

[7] K. Kumar, R. Kumar, T. de Boissiere, et al., “MelGAN: Generative
Adversarial Networks for Conditional Waveform Synthesis,” in Proc.
NeurIPS, 2019, pp. 14 910–14 921.

[8] J. Kong, J. Kim, and J. Bae, “HiFi-GAN: Generative Adversarial
Networks for Efficient and High Fidelity Speech Synthesis,” in Proc.
NeurIPS, 2020, pp. 17 022–17 033.

[9] H. Kawahara, “Speech representation and transformation using adap-
tive interpolation of weighted spectrum: vocoder revisited.,” in Proc.
ICASSP, vol. 2, 1997, pp. 1303–1306.

[10] M. Morise, F. Yokomori, and K. Ozawa, “WORLD: A Vocoder-Based
High-Quality Speech Synthesis System for Real-Time Applications,”
IEICE Trans. Inf. Syst., vol. 99, no. 7, pp. 1877–1884, 2016.

534



12000
Fr

eq
ue

nc
y 

[H
z]

10000

8000

6000

4000

2000

0.5 1.0 1.5 2.0 2.50

Time [s]
0.5 1.0 1.5 2.0 2.50

Time [s]
0.5 1.0 1.5 2.0 2.50

Time [s]

(a) SiFi-GAN (b) VAE-SiFiGAN (c) w/o Prior

0

Fig. 3: Spectrograms of generated singing voices.

4.5

4.0

3.5

3.0

2.5

2.0
0.5 1.0 2.0

M
O

S

modification ratio

2.88 3.32 3.09 2.51 2.87 3.034.22 4.16 4.08 4.02

＊ ＊
＊

＊

＊

＊

Fig. 4: Results of subjective evaluation. Error bars indicate
95% confidence intervals. There is no statistical difference
(p > 0.05) between any pairs marked with an asterisk.

[11] R. Yoneyama, Y.-C. Wu, and T. Toda, “Source-Filter HiFiGAN:
Fast and Pitch Controllable High-Fidelity Neural Vocoder,” in Proc.
ICASSP, 2023, pp. 1–5.

[12] T. Toda and K. Tokuda, “A Speech Parameter Generation Algorithm
Considering Global Variance for HMM-Based Speech Synthesis,”
IEICE Trans. Inf. Syst., vol. E90-D, no. 5, pp. 816–824, 2007.

[13] S. Takamichi, T. Toda, A. Black, G. Neubig, S. Sakti, and S. Nakamura,
“Postfilters to Modify the Modulation Spectrum for Statistical Paramet-
ric Speech Synthesis,” IEEE/ACM TASLP, vol. 24, no. 4, pp. 755–767,
2016.

[14] Y.-C. Wu, T. Hayashi, T. Okamoto, H. Kawai, and T. Toda, “Quasi-
Periodic Parallel WaveGAN: A Non-Autoregressive Raw Waveform
Generative Model With Pitch-Dependent Dilated Convolution Neural
Network,” IEEE/ACM TASLP, vol. 29, pp. 792–806, 2021.

[15] R. Yoneyama, Y.-C. Wu, and T. Toda, “High-Fidelity and Pitch-
Controllable Neural Vocoder Based on Unified Source-Filter Net-
works,” IEEE/ACM TASLP, vol. 31, pp. 3717–3729, 2023.

[16] R. Yoneyama, Y.-C. Wu, and T. Toda, “Unified Source-Filter GAN
with Harmonic-plus-Noise Source Excitation Generation,” in Proc.
Interspeech, 2022, pp. 848–852.

[17] Y. Hono, K. Hashimoto, Y. Nankaku, and K. Tokuda, “PeriodGrad:
Towards Pitch-Controllable Neural Vocoder Based on a Diffusion
Probabilistic Model,” in Proc. ICASSP, 2024, pp. 12 782–12 786.

[18] Y. Ohtani, T. Okamoto, T. Toda, and H. Kawai, “FIRNet: Fundamental
Frequency Controllable Fast Neural Vocoder With Trainable Finite
Impulse Response Filter,” in Proc. ICASSP, 2024, pp. 10 871–10 875.

[19] D. P. Kingma and M. Welling, “Auto-encoding Variational Bayes,” in
Proc. ICLR, 2014, pp. 1–5.

[20] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier Nonlinearities
Improve Neural Network Acoustic Models,” in Proc. ICML, 2013,
pp. 3–11.

[21] Y.-C. Wu, T. Hayashi, P. L. Tobing, K. Kobayashi, and T. Toda, “Quasi-
Periodic WaveNet: An Autoregressive Raw Waveform Generative
Model With Pitch-Dependent Dilated Convolution Neural Network,”
IEEE/ACM TASLP, vol. 29, pp. 1134–1148, 2021.

[22] X. Wang, S. Takaki, and J. Yamagishi, “Neural Source-filter-
based Waveform Model for Statistical Parametric Speech Synthesis,”
IEEE/ACM TASLP, vol. 28, pp. 402–415, 2020.

[23] M. Morise, “CheapTrick, A spectral envelope estimator for high-
quality speech synthesis,” Speech Communication, vol. 67, pp. 1–7,
2015.

[24] J. Kim, J. Kong, and J. Son, “Conditional Variational Autoencoder
with Adversarial Learning for End-to-End Text-to-Speech,” in Proc.
ICML, 2021, pp. 5530–5540.

[25] J. Kim, S. Kim, J. Kong, and S. Yoon, “Glow-TTS: A Generative
Flow for Text-to-Speech via Monotonic Alignment Search,” in Proc.
NeurIPS, 2020, pp. 8067–8077.

[26] M. Morise, “D4C, A band-aperiodicity estimator for high-quality
speech synthesis,” Speech Communication, vol. 84, pp. 57–65, 2015.

[27] Canon, [NamineRitsu] Blue (YOASOBI) [ENUNU model Ver.2, Singing
DBVer.2 release], https://www.youtube.com/watch?v=pKeo9IE L1I,
Accessed: 2024.1.30.

[28] M. Morise, “Harvest: A High-Performance Fundamental Frequency
Estimator from Speech Signals,” in Proc. Interspeech, 2017, pp. 2321–
2325.

[29] K. Yu and S. Young, “Continuous F0 modeling for HMM based
statistical parametric speech synthesis,” IEEE/ACM TASLP, vol. 19,
no. 5, pp. 1071–1079, 2010.

[30] W. Jang, D. Lim, J. Yoon, B. Kim, and J. Kim, “UnivNet: A Neural
Vocoder with Multi-Resolution Spectrogram Discriminators for High-
Fidelity Waveform Generation,” in Proc. Interspeech, 2021, pp. 2207–
2211.

[31] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimiza-
tion,” in Proc. ICLR, 2015, pp. 1–15.

535


