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Abstract—ClariNet provides high-quality speech but it is based
on a tricky knowledge-distillation training method with auxiliary
losses and large computational requirements. In this work,
we apply the Generalized Energy Distance with a repulsive
term to train a distillation-free ClariNet Vocoder that offers
simplicity, stable and fast training and has low computational
requirements. Its theoretical framework is developed, showing
that its gradient is stable. Then, we highlight the importance of
the repulsive term. Also, possible sources of instabilities during
the distillation-based training approaches are presented and
ways to ensure stable training are suggested, thus defining a
stable distillation-based baseline. Listening experiments using a
publicly available database show that the proposed distillation-
free ClariNet vocoder outperforms the stable baseline by 34% in
terms of MOS, while the perceptual importance of the repulsive
term is clearly demonstrated based on ABX preference test.

Index Terms—ClariNet, Generalized Energy Distance,
Kullback-Leibler divergence, Parallel-WaveNet, Speech
Synthesis, Stable Training

I. INTRODUCTION

Neural-based Text-to-Speech synthesis has made significant

progress in recent years, producing high-quality synthetic

speech. Consequently, it has been adopted as the mainstream

for research and industrial applications. WaveNet [1] is an

autoregressive generative model for waveform synthesis that

operates at a very high temporal resolution of raw audio sam-

ples and produces high-quality audio. However, its sequential

generation is too slow for real-time applications. One of the

first attempts to accelerate the generation process of WaveNet

is by distilling the knowledge of a trained WaveNet into a

flow-based model which generates all samples simultaneously.

Parallel WaveNet [2] and ClariNet [3] are two prominent

examples of knowledge distillation, and they are based on

Inverse Autoregressive Flows (IAFs) [4]. IAFs can be regarded

as the dual formulation of deep autoregressive modeling in

which sampling is performed in parallel. Note that in this case

the training procedure requires the estimation of the likelihood

which is sequential and slow [2]. To enable feasible training,

the knowledge from a pre-trained WaveNet is distilled [5]

into a student IAF. However, the two-stage training with

distillation is unstable and significantly affects the quality of

the synthesized speech [2], [3].

In this work we focus on ClariNet, which is an end-to-

end speech synthesis system, where the vocoder is similar

to Parallel WaveNet, but with a Gaussian output distribution

instead of a mixture of logistics. Since the distribution of

the teacher WaveNet is also Gaussian, the Kullback-Leibler

(KL) divergence between the output distribution of the teacher

and of the student can be expressed in closed form, fa-

cilitating the study of the loss function and its behaviour.

However, optimizing the KL divergence alone is not sufficient

to constrain the student to generate high-quality speech [2],

[3]. Additional losses, like power loss measuring spectral

distance, aim to address issues like mode collapse [6] and

hoarse-sounding speech in the student. A GAN-based loss

combined with a single STFT-based auxiliary loss has also

been used in the distillation approach [7]. In [8], ClariNet

is trained adversarially with Multi-Resolution Spectrogram

(MRS) auxiliary loss, using two training approaches.

A stable and consistent method for training implicit gener-

ative models was proposed by Gritsenko [9], [11], [13], [17].

Gritsenko applied a spectral (generalized) energy distance

(GED) for training a simplified GAN-TTS generator and also

used GED in combination with adversarial training. In contrast

to spectral losses employed in other recent works [12], [18],

GED includes a repulsive term and is the first proper scoring

rule applied in the speech synthesis domain.

In this work, we show that another type of parallel generative

models of speech (IAFs) may benefit from training with GED.

Energy distances have been applied in recent works [21],

[22], [24] as a replacement of previously widespread losses,

resulting in stable training and alleviating the mode col-

lapse problem of GANs. Their high-quality results have been

demonstrated experimentally in image-processing tasks. The

effectiveness of energy distances is established on their the-

oretical properties [23]. Overall, our contributions are sum-

marized as follows: (1) We propose a distillation-free training

method for the ClariNet Vocoder with a single loss function:

the generalized energy distance (GED). The training is stable

and inference produces high-quality generated speech samples.

(2) We prove that training with GED has no numerical

instabilities. (3) We compare our distillation-free approach

with a baseline using a distillation framework. Note that a

naive use of distillation framework will result in instabilities

in both stages (teacher-student). In this work we create a stable

baseline by introducing novel losses in the teacher-student
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training. These new loss terms penalize the out-of-range mean

and out-of-range scale parameters and are applied to both the

teacher and the student, thus enhancing the stability of the

training process.

This paper is organized as follows: Section II presents GED,

as a single-loss, distillation-free training approach of ClariNet

Vocoder. Then, in II-C, we provide the proof of the numerical

stability of GED. Section III describes our baseline with our

novel loss terms in the distillation framework. Section IV is

dedicated to our experiments and their outcomes. Section V

concludes the paper.

II. DISTILLATION-FREE TRAINING WITH GED

A. Background on GED

GED [9] is defined as the energy distance between two

multi-resolution spectrograms. GED belongs to a type of loss

known as Energy Score. Gneiting and Raftery [11] showed that

the repulsive term of GED give rise to a strictly proper scoring

rule which in turn implies improved statistical and convergence

properties. Gritsenko [9] combined the result of Gneiting and

Raftery [11] with the work of Engel et al. [12] to derive

his generalised Energy distance based on spectrograms. GED

is also related with Maximum Mean Discrepancy (MMD)

since a kernel function used in MMD can induce an energy

distance [13]. MMD is a popular probability distance measure

between two sample distributions. For MMD, the optimization

is assumed to be analytically tractable under some specific

conditions [14], [15], [16], making MMD methods stable and

consistent [17]. However, the proper scoring rule property

of GED implies more refined convergence outcomes, relative

to the consistency of MMD. Finally, the choice of distance

over spectrograms is very fundamental in practice since it

emphasizes which features of the generated speech are most

important to the human ear [9]. There are recent works

that use the Multi-Resolution Spectrogram (MRS) loss for

audio synthesis [12], and an MRS-based amplitude distance

for speech synthesis [18]. However, one important difference

between these approaches and GED, is that they lack the

repulsive term. In fact, in the speech synthesis domain, GED

is the first loss function of that type which is a proper scoring

rule.

B. GED definition

We train our model minimising the Generalized Energy

Distance between generated and real data. Let {xi, ci}
B
i=1

be a minibatch of B examples, where each xi ∈ R
T is a

speech segment and ci is the corresponding conditioning Mel-

spectrogram. The IAF model, fθ, generates two independent

samples yi = fθ(zi, ci) and y
′
i = fθ(z

′
i, ci) for each

conditioning feature ci, using two independent samples of

white noise sequences zi and z
′
i. The GED minibatch loss

is then calculated as

LGED(θ) =

B
∑

i=1

(2d(xi,yi)− d(yi,y
′
i)) (1)

with the multi-resolution spectral distance defined as [12]

d(xi,xj) =
∑

K∈[26...211]

∑

n

‖sKn (xi)− sKn (xj)‖1+

aK‖ log sKn (xi)− log sKn (xj)‖2 (2)

where the first sum is over a geometric sequence of window-

lengths from 64 to 2048, while

sKn (xi) = |STFTK
n (xi)|

2 (3)

denotes the n-th frame index (or time-slice) of the spectrogram

of xi with window length K. We set the weight aK =
√

K/2.
1) The crucial role of the repulsive term : The repulsive

term renders GED loss to be a proper scoring rule with respect

to the distribution over spectrograms of the generated wave-

form audio. The negative term in (1) −d(yi,y
′
i) empowers

the model to capture the underlying multi-modal conditional

waveform distributions of audio given Mel-spectrograms. This

repulsive term tries to push the generated samples apart from

each other, while the other terms of the loss aim to bring the

generated samples close to the real data. Without this term,

the quality of generated speech degrades resulting in inferior

scores, as it is shown experimentally in [9] and in our work

as well.

C. Training with GED is stable

In this section we show that the gradient of GED can be

computed efficiently and without numerical instabilities (so

that a model can be trained using the Stochastic Gradient

Descent method).

Proposition: The partial derivative of GED is bounded, when

sKn (yi) is bounded.

Proof: We note that both yi ∈ R
T and y

′
i ∈ R

T are

produced by the neural network and have the same distribution.

However, the gradients flow only through yi, while we use

stop gradient at y′
i.

sKn (xi) =











Re(sKn (xi))
2
1 + Im(sKn (xi))

2
1

Re(sKn (xi))
2
2 + Im(sKn (xi))

2
2

...

Re(sKn (xi))
2
K + Im(sKn (xi))

2
K











,

Replacing xi with yi in the above formula, we get sKn (yi).
We set:

L1(i,K, n) = ‖sKn (xi)− sKn (yi)‖1 =

K
∑

k=1

|Re(sKn (xi))
2
k+Im(sKn (xi))

2
k−Re(sKn (yi))

2
k−Im(sKn (yi))

2
k|

L2(i,K, n) = ‖ log sKn (xi)− log sKn (yi)‖2 = ‖ log sK
n
(xi)

sK
n
(yi)

‖2

=

√

√

√

√

K
∑

k=1

[

log
Re(sKn (xi))2k + Im(sKn (xi))2k + η

Re(sKn (yi))2k + Im(sKn (yi))2k + η

]2

where η is a small positive constant to ensure numerical sta-

bility. Accordingly we can write L3(i,K, n) and L4(i,K, n).
L3(i,K, n) = ‖sKn (yi)− sKn (y′

i)‖1

L4(i,K, n) = ‖ log sKn (yi)− log sKn (y′
i)‖2 = ‖ log sK

n
(yi)

sK
n
(y′

i
)
‖2
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1) Computation of the Loss: Combining (1) and (2),

LGED(θ) =

B
∑

i=1

2d(xi,yi)− d(yi,y
′
i) =

B
∑

i=1

∑

K∈{26,...,211}

∑

n

[2L1(i,K, n)

+2akL2(i,K, n)− L3(i,K, n)− akL4(i,K, n)] (4)

2) Backward propagation: For model training we need to

calculate the gradient vector
∂LGED(θ)

∂yi

∈ R
T and propagate it

back to the neural network. Although LGED(θ) is calculated

given complex-valued spectra it turns out that
∂LGED(θ)

∂yi

can

be computed using real-valued analysis. Let S be the frame

shift and w be a window of size K. Then the elements of the

n-th frame of yi are wmy
((n−1)S+m−1)
i , m ∈ {1, . . . ,K}.

We know that: Re(sKn (yi))k =

=
K
∑

m=1

wmy
((n−1)S+m−1)
i cos

2π(k − 1)(m− 1)

K

and Im(sKn (yi))k =

= −
K
∑

m=1

wmy
((n−1)S+m−1)
i sin

2π(k − 1)(m− 1)

K

which are real-valued numbers, like
∂LGED(θ)

∂ Re(sK
n
(yi))k

and
∂LGED(θ)

∂ Im(sK
n
(yi))k

. Hence, we can compute the gradient using the

chain rule.
∂LGED(θ)

∂wmy
((n−1)S+m−1)
i

=

K
∑

k=1

[

∂LGED(θ)

∂ Re(sKn (yi))k

∂ Re(sKn (yi))k

∂wmy
((n−1)S+m−1)
i

+
∂LGED(θ)

∂ Im(sKn (yi))k

∂ Im(sKn (yi))k

∂wmy
((n−1)S+m−1)
i

]

= (5)

K
∑

k=1

[

∂LGED(θ)

∂ Re(sKn (yi))k
cos

2π(k − 1)(m− 1)

K

−
∂LGED(θ)

∂ Im(sKn (yi))k
sin

2π(k − 1)(m− 1)

K

]

(6)

Now, we need to calculate the corresponding gradient of each

term of (4), in order to compute

∂LGED(θ)

∂ Re(sKn (yi))k

∂L1(i,K, n)

∂ Re(sKn (yi))k
=

K
∑

k=1

sign
(

Re(sKn (yi))
2
k + Im(sKn (yi))

2
k

−Re(sKn (xi))
2
k − Im(sKn (xi))

2
k

)

· Re(sKn (yi))
2
k

(7)

and
∂L2(i,K,n)

∂ Re(sK
n
(yi))k

= 4 · 0.5(L2(i,K, n))−1·

·
K
∑

k=1

Re(sKn (yi))k
Re(sKn (yi))2k + Im(sKn (yi))2k + η

·

· log
Re(sKn (yi))

2
k + Im(sKn (yi))

2
k + η

Re(sKn (xi))2k + Im(sKn (xi))2k + η

(8)

Without the constant η, the partial derivative
∂LGED(θ)

∂ Re(sK
n
(yi))k

could become infinite when Im(sKn (yi))k = 0 and

Re(sKn (yi))k → 0. Likewise, we compute
∂LGED(θ)

∂ Im(sK
n
(yi))k

.

After the introduction of constant η, the partial derivatives
∂LGED(θ)

∂ Re(sK
n
(yi))k

and
∂LGED(θ)

∂ Im(sK
n
(yi))k

are always bounded, and this

implies that the partial derivative,
∂LGED(θ)

∂wy
((n−1)S+m−1)
i

, is also

bounded. That means that the error, that is propagated to

update the weights of the neural network, is bounded and that

GED does not have numerical instabilities during training.

III. STABLE DISTILLATION-BASED BASELINE

During the conventional distillation training for the ClariNet

Vocoder, the teacher predicts Gaussian distribution parameters

and the student adapts its weights to approximate the distri-

bution of the teacher. The Kullback-Leibler (KL) divergence

measures how two probability distributions differ, and the

optimization algorithm tries to minimize this divergence.

A. Kullback-Leibler (KL) divergence

The KL divergence between two distributions q and p of a

continuous random variable is:

DKL(q||p) :=

∫ +∞

−∞

q(x) log

(

q(x)

p(x)

)

dx (9)

When both q(x) and p(x) are Gaussians, then the above

integral has a closed form. Let q(x) = N (µq, σ
2
q ) be the

student and p(x) = N (µp, σ
2
p) be the teacher distributions,

then the KL divergence is [3]:

DKL(q||p) = log
σp

σq

+
σ2
q − σ2

p + (µp − µq)
2

2σ2
p

(10)

A well trained teacher WaveNet model has highly peaked

output distributions. At the beginning of the training, σp and

σq have very different magnitudes and combining that with

potential small σp values, numerical problems will occur.

B. Training teacher WaveNet

To ensure stable training of the ClariNet vocoder, it’s crucial

to address instabilities associated with the WaveNet model.

WaveNet, occasionaly, becomes unstable, leading to out-of-

range speech samples sounding similar to white noise, known

as Type I artifacts [19]. Type I errors stem from training

instabilities and are connected to the form of the loss function,

in combination with audio segments with small variations

around the mean trajectory, such as silences. As both the

teacher WaveNet and ClariNet predict Gaussian distribution

parameters, we explore methods to train models that mitigate

the occurrence of Type I artifacts. The negative log-likelihood
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of a Gaussian distribution, N (0, σ2) and its derivative are

respectively

L(σ) = − log p(x) =
1

2
log 2π + log σ +

1

2

x2

σ2
, (11)

∂L(σ)

∂σ
=

1

σ
−

x2

σ3
. (12)

In silence segments, it holds that x ≈ 0 and the log σ term

dominates. The derivative of L(σ) is positive and pushes σ
towards zero. After a silence segment, σ has progressively

become very small and if a sample appears with x ≫ σ, then

the term 1
2
x2

σ3 dominates. The derivative of L(σ) is negative

and pushes σ towards +∞. Then the minimization of L(σ)
may get stalled in local optima, in short, very far away from

the optimal values.

C. Novel loss terms in teacher-student training

Based on above analysis and in order to stabilize the training

without modifying the network, we suggest the use of novel

additional loss terms which penalize the low or high values of

the log σ parameter and the mean, µ, values outside the interval

[−1, 1]. The out-of-range loss term for log σ is defined as:

LlogScale = λ1 max(0, ζ1 − log σ) (13)

where we set ζ1 = −7 thus penalizing scale values below

0.001, while we set λ1 = 200, a constant weighting that

balances of the loss terms (note, other values for λ1 are

possible). The out-of-range loss for log σ is suggested to be

used together with clipping the log σ before the calculation of

the KL divergence. The clipping is used to prevent numerical

instabilities, while the out-of-range loss tries to correct the

weights of the network that have been affected by previous

numerical instabilities by sending a feedback to them. The

out-of-range loss terms for µ are defined as:

LMeanMin = λ2 max(0,−1− µ) (14)

LMeanMax = λ3 max(0, µ− 1) (15)

where we set λ2 = λ3 = 100 (these values have been chosen

experimentally). These loss terms can be used in the training

of the teacher WaveNet and of the student in the ClariNet

vocoder. Based on our experiments, these terms stabilize the

training even for small batch sizes which are necessary for

single GPU training and with noisy databases. Also, they do

not affect the speed in the generation stage. On the other hand,

they slightly slow down the training.

IV. EXPERIMENTS

For our experiments, the following loss functions were used

for training the ClariNet Vocoder with the default architecture

[3]: (1) KL and out-of-range losses (baseline). (2) GED and

KL and out-of-range losses. (3) GED only (distillation-free).

(4) GED without the repulsive term. Note that the conditions

of training as well the quality of the speech database used for

training can influence the probability of unstable training. For

example, the use of a small batch size (which is suitable for

a single GPU training) increases the possibility of unstable

training. Note that large batch size, on the other hand, doesn’t

guarantee a robust training. The batch size was set to 4 and a

single GPU (GeForce RTX2080) training has been conducted.

All models were trained and tested on a public domain speech

dataset (LJSpeech) consisting of 13,100 short audio clips (total

length ∼24 hours, sampling frequency 22050Hz) of a single

female speaker [10]. LJSpeech contains audio clippings and

long silence segments between words. As we have shown,

such segments trigger instabilities during training and com-

bined with, the otherwise very good quality of the database,

make LJSpeech ideal for our study. For the conditioning Mel

spectrogram computation we used 80 dimensions, 1024 fft

size, and 256 hop size.

To assess the performance of each method employed in

our study (excluding the variant without the repulsive term

for a reason explained below), we used the Mean Opinion

Score (MOS) (Table I). Our listening test [26], [27] engaged

20 native English speakers. A set of 7 test utterances was

synthesized by each model and given to the participants of

the listening test. They were asked to evaluate the percep-

tual sound quality of speech. The possible responses were:

5=Excellent, 4=Good, 3=Fair, 2=Poor, 1=Bad. Participants

wore headphones and had no hearing impairments. We also

conducted an ABX preference listening test with 10 expert

listeners, comparing the model trained with GED and the

model without the repulsive term. The latter was not included

in the MOS evaluation because it generated samples with a

metallic sound, confirming the necessity of the repulsive term.

Each one out of 10 sample utterances was synthesized by the

model trained with GED and the model without the repulsive

term. For each utterance the participants had to choose the

best of the two generated samples or neither.

A. Analysis of the results

The MOS and the ABX preference results are shown in Ta-

bles I and II, respectively. It is worth mentioning that making

use of the novel additional loss terms, no artifacts of type I

were detected in our test samples. Based on the MOS results,

the best model is the one trained with GED only. This model

learned to generate realistic waveform of very good quality

without the teacher WaveNet. Models utilizing GED generally

TABLE I
MEAN OPINION SCORE (MOS) WITH STANDARD ERROR

Model MOS

GED + KLDivergence + novel loss terms 3.04±0.16
KLDivergence + novel loss terms (baseline) 3.00±0.15
GED (distillation-free) 4.03±0.19

Original Speech 4.99±0.01

TABLE II
RESULTS OF THE ABX PREFERENCE LISTENING TEST.

Model GED w/o repuls.term GED Neither

Preference 2% 96% 2%
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outperformed those that did not. The combination of GED

with KL-Divergence resulted in synthesized speech of good

quality, in general, but could not surpass the performance of

the GED-only model. We note here that in [9] the combination

of GED with adversarial techniques has shown improvement

upon the GAN-TTS model in terms of MOS.

In the ABX listening test, the participants overwhelmingly

preferred the model trained with GED, with a preference

rate of 96%, (Table II). It’s worth noting that using GED

(with the repulsive term) led to a consistent decrease in the

validation loss during training. In summary, our experiments

show that incorporating GED into the training process yields

the best results in terms of speech quality and improving

overall performance. A direct comparison between this work

and other approaches was not appropriate, because of the

lack of authentic implementation of the models used in our

experiments.

V. CONCLUSION

In this work, we propose using Generalized Energy Distance

(GED) for training ClariNet Vocoder, simplifying the process

by eliminating the need for distillation. This single-stage

approach utilizing a single loss function, improves speech

quality, ensures stable training, and reduces training time.

We also provide theoretical proof of numerical stability with

GED. Additionally, we addressed instabilities in our baseline

ClariNet Vocoder by introducing novel loss terms that enhance

training stability.
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