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Abstract—This paper presents a novel framework for explain-
ing anomalous machine sounds in the context of unsupervised
anomalous sound detection (UASD). While UASD techniques have
been widely studied, a key challenge remains: understanding how
anomalous sounds differ from normal sounds to better support
machine condition monitoring. Existing methods for describing
sound differences rely on anomalous sounds for training, which
is impractical in real-world scenarios where such data is typically
unavailable. To address this limitation, we propose a new frame-
work that explains anomalous sound differences by a pre-selected
list of timbre-related words, such as brightness and boominess,
instead of free-form text captions. The relationship between
such words and a given sound has been objectively modeled
as “timbral metrics” through psychoacoustical research, allowing
the estimation of changes in timbre without the need for training
machine learning models on anomalous sounds. Furthermore, to
handle variations in normal training data, we propose a method
that uses a k-nearest neighbors approach in the audio embedding
space to measure how an anomalous sample’s timbre differs
from normal samples, while simultaneously performing UASD.
We evaluated the proposed method on the MIMII DG dataset,
demonstrating its effectiveness in explaining anomalous sounds
while conducting UASD at the same time.

Index Terms—Anomalous sound detection, Timbral attributes

I. INTRODUCTION

Anomalous sound detection (ASD) [1] is a task that detects
sounds that are “not normal“. Applying this to sounds emitted
from machines can lead to detecting mechanical failures,
which helps monitoring machine condition. Since anomalous
sounds are challenging to collect, ASD is often challenged in
scenarios where only normal sounds are available for training,
known as Unsupervised ASD (UASD) [1]-[8].

(U)ASD only detects the condition (normal or anomalous)
of a given sound without specifying how the anomalous sound
differs from normal ones. Consequently, further analysis is
necessary to determine the cause of the anomaly and whether
repairs are needed. Identifying how the anomalous sound
differs from normal sounds can make this analysis easier, as
it may indicate the type of machine malfunction. We refer
to such differences observed in anomalous sounds as the
“anomalous difference”. In relation to such motivation, [9]
proposes a task that explains the differences between two
sounds by training a model to generate captions describing
how normal sounds differ from anomalous ones. A similar
task was also explored in [10] for general sound events.
However, these methods cannot be used in the typical UASD
problem setting for the following reasons: 1) They require
normal and anomalous sound pairs and ground truth difference
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Fig. 1: Illustration of aim of proposed method. When com-
paring timbral metric values of anomalous sample to whole
normal data, differences cannot be determined (red dot in
normal timbre distribution). By comparing timbral metric
only with neighbor normal samples in feature space, timbre
differences can be determined (Target timbre diff.).

captions for training. This is impractical because anomalous
samples are unavailable in UASD and creating captions for
paired data is time-consuming. 2) These methods only describe
differences between two audio samples. UASD focuses on
detecting whether a sample deviates from the entire normal
data distribution, which means that anomalous differences
should also be explained based on how the anomalous sample
differs from the whole normal data distribution. 3) They
focus only on generating captions for anomalous differences
without performing UASD, whereas it is preferable for the
explanations to align with the UASD results.

To address these issues, we propose a new strategy for
anomalous difference explanation that suits the UASD problem
setting and an anomalous difference explanation method that
can be conducted along with UASD. Specifically, to solve is-
sue (1), we introduce an anomalous difference explanation
framework that explains differences solely in pre-selected
terms related to timbre, such as sharpness or boominess,
instead of using free-form text captions (Contribution 1).
The goal of this framework is to determine whether the sound
impression represented by each timbre-related term has been
reinforced or weakened. For instance, whether the sharpness
has increased or the boominess has decreased, and so on.
Objective metrics that quantify the degree of such impressions
in sounds have been developed through psycho-acoustical re-
search in the literature [11], [12], which enables us to infer the
change in these impressions without model training. We term
such changes in the impression of a sound “timbre difference®,
and term this framework “timbre difference capturing”.

Furthermore, to ensure robustness against variations in
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Fig. 2: Overview of proposed joint UASD and tim

normal training data, we further propose a method that
performs timbre difference capturing by comparing the
test sound with normal sounds most similar to it found in
an embedding space (Contribution 2). Finally, we created
a dataset with ground truth timbre differences and evaluated
the effectiveness of the proposed method.

II. PROPOSED TASK: TIMBRE DIFFERENCE CAPTURING

In this section, we propose a new task for explaining
anomalous differences that suites the UASD problem setting.
As in UASD settings [13]-[15], we only have normal data
{wﬁfr)}?;{v for training, possibly with optional metadata (e.g.,
machine speed). During inference, the system sees both normal
and anomalous sounds without any extra information, and first
must decide if a sound is normal or anomalous.

If a sample is decided as anomalous, the system has to
explain how it is anomalous. Since anomalous data are not
available for training, existing sound difference captioning
methods [9], [10] cannot be applied. To address this, we
introduce a novel framework “timbre difference capturing®,
which describes anomalous differences by pre-selected timbre-
related terms rather than using free-form captions. For the
timbre-related terms, we especially use words that are known
as “timbral attributes* [16], which are adjectival words such
as sharpness or boominess that decompose the various aspects
of timbre. Research has developed mathematically formulated
models that quantify these timbral attributes as objective
metrics called timbral metrics* [11], [12], which enables us
to identify how strong humans will perceive that attribute
without supervised machine learning. Additionally, timbre-
related features have been applied for detecting machine mal-
functions [17]-[19], demonstrating their relevance in detecting
machine malfunctions. Still, these methods have not tried to
directly explain anomalous differences using timbre, which
will be the scope of this paper.

We predefine L 5 timbral attributes relevant to ma-
chine failures, following [19]: 1) Sharpness: Sharp or shrill
sensation, 2) Roughness: Buzzing, raspy sound quality, 3)
Boominess: Booming sensation, often perceived as low-pitch
vibration, 4) Brightness: Bright sensation, 5) Depth: Empha-
sized low-frequency component. These attributes are modeled
as timbral metrics in [12], which we use here. Using these
attributes, the goal of timbre difference capturing is defined as
follows: Given an anomalous test sample x(*), determine
whether each attribute [ (I 1,...,L) has increased,
decreased, or remained unchanged due to the anomaly.
For example, if a machine malfunction causes an additional

bre difference capturing method in inference phase.

buzzing sound, the Roughness attribute may increase while
other attributes remain unchanged. Here, due to the anomaly”
specifically refers to changes in timbre caused by machine
malfunctions. Any timbre variations resulting from other fac-
tors, such as background noise or the machine’s operational
status, should be excluded. We represent the timbre differences
by labels y; € {1,0,—1} (1 <1 < L), where 1,0, —1 stands
for increased, no change, and decreased, respectively.

While timbral metrics for both normal and anomalous data
can be computed directly, y; cannot be estimated directly due
to interference from factors like background noise or normal
sound variations. The proposed method addresses this issue
without requiring anomalous samples during training. Finally,
although using a limited set of timbral attributes is less flexible
than free-form captions, it still offers valuable insights into
how anomalous sounds differ from normal ones. Extending
beyond these attributes is left for future work.

III. PROPOSED METHOD
A. Overview

Although we can directly compute timbral metrics for both
normal training data and anomalous inference data [12], this
alone does not identify the true timbre difference. This is
because machine sounds vary due to factors such as machine’s
operational modes, recording conditions, or noise, and timbre
also varies due to such factors. To address this, we propose a
method that focuses on extracting how the anomalous sound
differs from normal sounds occured under the same conditions,
ruling out irrelevant variations. Specifically, we assume that
normal samples recorded under identical conditions as the
anomalous sample are the samples that are most similar to that
anomalous sample. By comparing the anomalous sample only
with those similar normal samples, we can estimate its timbre
difference more accurately. To find these similar samples, we
use an audio encoder to extract embeddings for each sample,
then identify the nearest neighbor normal samples in the
embedding space. We illustrate this concept in Fig. 1.

Fig. 2 summarizes the proposed method. The method first
extracts embeddings of given audio samples by an arbitrary
audio encoder and conducts timbre difference capturing along
with UASD based on those embeddings. Here, the embeddings
are used to detect the k-nearest neighbor (knn) normal samples
of the test data from {wgr)}ﬁf:l. The audio encoder can be
a pre-trained model, trained from scratch, or a pre-trained
model with fine-tuning. Since the choice of audio encoders are
arbitrary, we omit explanations for this part. In the following
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TABLE I: Statistics of ground truth timbre difference labels
for ¢ = 0.05. #g, #u, r denote number of conditions, unique
timbre difference label vectors, and labels of each values.

Section section 00 section 01 section 02
Machine | #¢g #u r(—=1/0/1) | #g #u r(=1/0/1) | #g #u r(=1/0/1)
Bearing | 26 23 32/49/34 32 19 16/44/35 4 1 2/3/0
Fan 3 2 1/6/3 7 6 7/6/17 3 3 5/9/1
Gearbox | 26 17 14/28/43 23 13 6/15/44 6 6 8/9/13
Slider 26 11 24/14/17 26 10 26/15/9 6 4 4/11/5
Valve 4 2 2/7/1 8 8 3/29/8 7 4 9/2/9

subsections, we explain how UASD and timbre difference
capturing are conducted in inference phase.

B. UASD

We denote F () as the embedding obtained by the audio
encoder E(-). Then, the anomaly score of a test sample x'
is given as the knn distance between z* and {z(”}"=N

measured in the embedding space, which is

k
1
t _ t t
A(we)—g;d(E(we)»E(wﬁi))’ (M
where d(-,-) measures the distances between the given em-
beddings, such as the Cosine distance. n; (i = 1,...,k) is

the index of the i-th nearest neighbor training sample x;; ,

based on d(-, ). This strategy of combining an audio encoder
with a knn-based anomaly score calculator has been used in
various UASD methods [13], [14], including methods used in
top rankings of the latest UASD competitions [8], [20]. This
means that the proposed method can be used to extend such
methods for timbre difference capturing, which is a further
advantage of the proposed method.

C. Timbre difference capturing

Let T;(x) (I = 1,...,L) be the timbral metric value of
attribute | for an audio sample . We estimate the timbre
difference label by evaluating how much the timbral metric
of the test sample deviates from the knn normal training
samples. Suppose T (') was the r-th smallest value among

{7y (), Ty (x%,),-- , Ty («%,)}. Then, we compute the
timbre difference score of z% as

. r—1

i (@) =" e lo.1). @

This evaluates how large the timbral metric of the test sample
is among the k-nn training samples in a nonparametric manner.
Note that this value is equivalent to the special case of the U
value used in the Mann-Whitney U test [21], with normaliza-
tion. The Mann-Whitney U test is a nonparametric statistical
test that evaluates whether the given two sets of samples are
sampled from different distributions. Therefore, this value can
be used for evaluating differences in the timbral metric values.
Lastly, by using a predefined threshold ¢ € [0, 1], the timbre
difference labels are estimated as

-1 g <t
Z)l (mte) =40 t<y<1-—t 3)
1 1—-t< 7.

IV. DATASET CREATION
For evaluation, we created a UASD dataset with ground
truth timbre difference labels. We used the MIMII DG dataset

[1], a UASD dataset featuring domain generalization settings,
which was also used in recent UASD competitions (DCASE
Challenge Task 2 from 2022 to 2024 [14], [15], [22]). The
dataset covers five machine types, each with three sections
containing both source and target domain data. While MIMII
DG includes machine sounds with factory noise, we also
have original recordings and detailed anomaly information for
each anomalous sample, enabling us to assign ground truth
timbre difference labels. We refer to the original, noise-free
recordings as the “clean dataset” and the MIMII DG dataset
as the "noisy dataset™. See [23] for further details.

The ground truth timbre difference labels for anomalous
sounds were automatically generated using the timbral met-
rics computed by timbral models [12]. To only extract the
sound difference specifically caused by machine anomaly, the
ground truth labels should be determined by comparing the
anomalous sounds with normal sounds that are recorded under
identical conditions, including both machine operational and
recording conditions. Furthermore, if the cause of the anomaly
is identical, the ground truth label should also be identical.
Therefore, we initially determined a single ground truth label
for each condition and cause of anomalies, and then assigned
these same label values to anomalous samples with identical
conditions and anomaly causes.

For a single data section in the clean dataset, suppose there
are M conditions and () types of anomaly causes. Here, the
conditions can be the machine’s operational conditions such
as machine speed, recording conditions such as microphone
locations, or a combination of them. Let Dy, and D%, m =
1,....,M,q=1,...,Q, be a subset of normal training data in
the clean dataset that was recorded under condition m and a
subset of the anomalous data in the clean dataset for condition
m and anomaly cause ¢, respectively. To derive the ground
truth label for (m, q), we compute a score that indicates how
much each timbral metric differs between these two sets of
audio samples. Let 7; (D) = {T;(x)|lx € D} denote the
values of timbral metrics of timbre attribute [ for a set of audio
samples {D}. We then evaluate the deviation of the timbral
metrics between normal and anomalous samples as

Jmq = AUC (T (D) . Ti (D)) € 0,1). (4
Here, AUC (71, 72) denotes the area under the receiver oper-
ating characteristic curve (AUC) when 77 and 73 are regarded
as the scores of negative and positive samples, respectively.
Note that AUCs are also equivalent to the normalized version
of the U value in the Mann-Whitney U test [21], which
justifies using this score. Next, by conducting the same
thresholding shown in (3) by another predefined threshold
t' € [0, 1], we obtain the ground truth timbre difference label
Ym,q € {1,0,—1}. Since t' determines from what degree
of difference to notify, we tested various values ranging in
0.02 < ¢/ < 0.2. Finally, we assign each anomalous sample in
the noisy dataset (=MIMII DG dataset) the labels computed
for the corresponding condition and anomaly cause. Note that
in inference, we cannot run the same procedure that created
these ground truth labels, since conditions of the test data are
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TABLE II: AUC of UASD (%) (for reference)

Source

Target

Method Bear. Fan Gear. Slider Valve Mean | Bear. Fan Gear. Slider Valve Mean
Timbre-knn 629 644 555 68.1 63.0 62.8]| 49.7 451 525 543 556 514
Mbn-v2 707 685 694 690 789 71.3| 63.7 477 688 562 577 58.8

PANNs 645 727 581 716 576 66.1| 554 482 567 585 595 557
CLAP 654 69.7 665 871 602 698 528 454 613 70.0 582 575
BEATs 68.2 788 73.1 812 552 71.3| 484 548 658 60.5 50.0 559

unknown and the data is corrupted with environmental noise.
This is why we have to estimate the timbre difference label
such as in the proposed method.

We summarize how many unique label combinations were
created and the ratio of each label value in TABLE I. The va-
riety of the ground truth labels indicates that estimating these
labels can be informative in explaining the difference between
normal and anomalous sounds. For example, one damage type
in Bearing section 00 resulted in increased Sharpness and
Boominess for a specific velocity, whereas another damage
type resulted in decreased Sharpness and Brightness for the
same velocity. Thus, by interviewing machine inspectors be-
forehand, it might be possible to automatically distinguish the
anomaly causes using the acquired information.

V. EXPERIMENTS
A. Experimental conditions

We conducted a joint UASD and timbre difference capturing
experiment on the described dataset. While UASD results only
serve as reference, our main goal is to evaluate the timbre
difference capturing performance. For the audio encoder, we
employed four models: MobileNet-v2 [24], PANNs [25], the
audio encoder from CLAP [26], and BEATS [27]. MobileNet-
v2 (Mbn-v2) was the baseline model in DCASE 2022 [14]
and we used the same preprocessing and training procedure
as in the original classification task for machine attributes.
Specifically, Mbn-v2 was trained for 50 epochs using AdamW
with a learning rate of 10~*. For the other models, we
utilized publicly available pretrained models [25]-[27] without
additional modifications. Although various training methods
and model architectures for the audio encoder have been
explored in the literature for UASD, we chose to evaluate only
the simplest approaches. Still, BEATs [27] was utilized (with
further fine-tuning and model ensembling) in the top-ranking
solutions in the DCASE 2024 Challenge task 2 [8], [20], so it
can be seen as a simplified representative of the best current
methods. For all models, we set k¥ = 30. However, similar
results were observed when k was set around 10 to 40. The
threshold ¢’ for the ground truth labels, and the threshold ¢
for each timbre difference capturing method were both set to
multiple values {0.02,0.05,0.1,0.15,0.20}, and the average
performance over all the values was computed.

For comparison, there are no existing methods in the lit-
erature that can be performed for this task. This is because
existing audio difference captioning methods [9], [10] require
normal-anomaly pairs of audio data and captions for training,
whereas no anomalous data are available for training in UASD.
Additionally, the existing timbre-based ASD method [19] was
also a supervised ASD method, thus cannot be performed
in our problem setting. For this reason, we designed and

performed three baseline methods to evaluate the effectiveness
of the proposed method. The first method uses a constant
timbre difference label as output, §; = 0 (Constant). The
second method estimated the labels by comparing the anoma-
lous sample’s timbral metrics with all normal training samples
using (2) (Compare-All). This served as the baseline for timbre
difference label estimation without normal sample selection. In
the third method, we performed UASD and timbre difference
capturing with the L timbral metrics as the features for knn,
instead of the audio embeddings (Timbre-knn). Comparing
with this method allowed us to evaluate the effectiveness of
using audio encoder embeddings.

The UASD performance was evaluated by AUC. The timbre
difference capturing performance was evaluated by the mean
absolute error (MAE) for anomalous samples, where we
normalized the error to compensate for imbalances in ground
truth labels [28]. That is, for timbre [, the MAE value is

M. e
MAE, = 1 Z 9 (®F) — Y 5)
3 i=1 Ml,yl,i '

where {x¢}M, are the anomalous test data, y; ; is the ground

truth timbre difference label for timbre [ of sample x;, M; , =
Hyii |y =y,1 < i< M} is the number of samples in the
test data that the ground truth label value is identical to y.

B. Results

For reference, we show the AUC values of each method in
TABLE II. All four audio encoders had higher average AUC
values than Timbre-knn. This indicates that timbral metrics
alone are not good features for detecting anomalies, whereas
the audio embedding spaces obtained from the models can
better distinguish anomalies. Still, describing differences with
timbre for each machine condition can be useful, which is
pursued by the proposed method (Fig. 1).

Next, Table III shows the MAE of timbre difference captur-
ing, which is the main result of our experiment. In the source
domain, PANNs, CLAP, and BEATs had smaller average MAE
than the three baseline methods, indicating the effectiveness of
our proposed strategy of comparing anomalous samples with
nearby normal samples. Notably, BEATS yielded a much lower
MAE than the baseline methods, consistent with its highest
AUC score. BEATs performed particularly well on Bearing,
Gearbox, and Slider, which were the machines that had many
conditions that can alter their sounds (see “#g” in Table I).
This indicates that the proposed method achieves its initial
goal of accurately estimating timbre differences even when
normal sounds vary widely.

By contrast, although MobileNet-v2 resulted in the same
average AUC value as BEATS, its average MAE was mostly
the same as the baseline methods. A possible explanation is
that MobileNet-v2 was only trained on normal sounds from
the target machines, which limited its ability to assess how
similar the normal sounds are to out-of-distribution anomalous
data—even though it could recognize when a sample was
out-of-distribution. In contrast, the other audio encoders were
trained on a broad spectrum of sound data, likely producing
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TABLE III: MAE of timbre difference capturing ({). Average and standard deviations across threshold values ¢ are shown.

Source Target
Method Bearing Fan Gearbox Slider Valve Mean Bearing Fan Gearbox Slider Valve Mean
Constant 0.56 = 0.06 0.61 £ 0.10 0.74 &£ 0.04 0.57 £ 0.06 046 £ 0.13 0.59 | 0.67 £ 0.06 0.66 & 0.10 0.71 £ 0.05 0.69 & 0.06 0.67 £+ 0.05 0.68
Compare-All 0.45 £ 0.06 0.57 & 0.10 0.66 £ 0.04 0.61 & 0.07 0.49 £ 0.16 0.56 |0.56 £+ 0.05 0.64 £ 0.09 0.68 &+ 0.04 0.65 £ 0.04 0.62 + 0.05 0.63
Timbre-knn 046 £ 0.05 0.55 £ 0.07 0.71 £ 0.04 0.57 £ 0.07 0.51 £ 0.15 0.56 | 0.59 & 0.08 0.64 & 0.09 0.68 & 0.05 0.74 £ 0.08 0.65 £+ 0.06 0.66
Mbn-v2 (Proposed) 0.44 + 0.05 0.57 £ 0.07 0.77 & 0.04 0.58 £ 0.06 0.51 + 0.14 0.58 | 0.60 £ 0.07 0.61 &+ 0.07 0.70 £ 0.04 0.63 + 0.05 0.59 £ 0.06 0.63
PANNSs (Proposed) 0.45 4 0.06 0.52 4 0.06 0.61 4 0.04 0.50 4= 0.08 0.49 &+ 0.15 0.52 | 0.58 &+ 0.06 0.64 + 0.08 0.67 = 0.05 0.61 + 0.03 0.68 + 0.09 0.64
CLAP (Proposed)  0.42 4 0.05 0.52 4 0.06 0.61 & 0.04 0.48 &+ 0.07 0.48 &+ 0.15 0.50 | 0.57 & 0.07 0.63 & 0.07 0.66 + 0.05 0.58 + 0.04 0.64 + 0.08 0.62
BEATSs (Proposed) 0.35 & 0.05 0.50 £ 0.04 0.58 & 0.04 0.48 £+ 0.07 0.45 &+ 0.15 0.47 | 0.60 £ 0.07 0.61 & 0.07 0.67 £ 0.05 0.62 &+ 0.06 0.62 £+ 0.08 0.62

embedding spaces that better capture similarities between
normal and anomalous machine sounds. In the target domain,
the various methods all showed similar MAE values, possibly
because of the limited dataset size. Addressing this issue
lies beyond this paper’s scope and future work to solve it
will be needed. Overall, these findings suggest that by using
audio encoders with rich embedding spaces, the proposed
method can accurately estimate timbre differences even under
significant variation in normal data, provided that sufficient
training data are available.

VI. CONCLUSION

We proposed a framework to explain anomaly differences
based on pre-selected timbral attributes, which does not require
anomalous data or ground truth labels for training. We then
further proposed a timbre difference capturing method that
works alongside UASD, comparing anomalous test samples
only with their most similar normal training examples. We
achieved this by using audio encoders and k-nearest neighbors
in the embedding space the encoders generate. Experiments
using the MIMII DG-based dataset, with additionally gener-
ated ground truth timbre difference labels, confirmed that the
proposed method can accurately estimate the timbre difference
labels even when the normal training sounds have a variety due
to various conditions.

VII. ACKNOWLEDGMENT

We would like to express our sincere gratitude to Prof.
Keisuke Imoto of Doshisha University for his invaluable
advice throughout this research.

REFERENCES

[1]1 Y. Koizumi et al., “Description and discussion on DCASE2020 Chal-
lenge Task2: Unsupervised anomalous sound detection for machine
condition monitoring,” in Proc. DCASE Workshop, 2020, pp. 81-85.
K. Suefusa, T. Nishida, H. Purohit, R. Tanabe, T. Endo, and
Y. Kawaguchi, “Anomalous sound detection based on interpolation deep
neural network,” in Proc. IEEE ICASSP, May 2020, pp. 271-275.

R. Giri, S. V. Tenneti, K. Helwani, F. Cheng, U. Isik, and A. Kr-
ishnaswamy, “Unsupervised anomalous sound detection using self-
supervised classification and group masked autoencoder for density
estimation,” DCASE Challenge, Tech. Rep., 2020.

K. Dohi, T. Endo, H. Purohit, R. Tanabe, and Y. Kawaguchi, “Flow-
based self-supervised density estimation for anomalous sound detection,”
in Proc. IEEE ICASSP, 2021, pp. 336-340.

J. Lopez, G. Stemmer, and P. Lopez-Meyer, “Ensemble of comple-
mentary anomaly detectors under domain shifted conditions,” DCASE
Challenge, Tech. Rep., 2021.

K. Wilkinghoff and F. Kurth, “Why do angular margin losses work well
for semi-supervised anomalous sound detection?” IEEE/ACM Trans.
Audio, Speech, Lang. Process., vol. 32, pp. 608-622, 2024.

K. Wilkinghoff, “Self-supervised learning for anomalous sound detec-
tion,” in Proc. IEEE ICASSP, 2024, pp. 276-280.

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]
[10]

(11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]

(22]

[23]

[24]

[25]

[26]

(271

(28]

550

Z. Lv et al., “Aithu system for first-shot unsupervised anomalous sound
detection,” DCASE Challenge, Tech. Rep., June 2024.

S. Tsubaki et al., “Audio-change captioning to explain machine-sound
anomalies,” in Proc. DCASE Workshop, September 2023, pp. 201-205.
D. Takeuchi, Y. Ohishi, D. Niizumi, N. Harada, and K. Kashino, “Audio
difference captioning utilizing similarity-discrepancy disentanglement,”
in Proc. DCASE Workshop, September 2023, pp. 181-185.

K. Jensen, “The timbre model,” J. Acoust. Soc. Am., vol. 112, no. 5, pp.
2238-2238, 2002.

A. Pearce, T. Brookes, and R. Mason, “Timbral attributes for sound
effect library searching,” in J. Audio Eng. Soc., 2017.

Y. Kawaguchi et al., “Description and discussion on DCASE 2021
Challenge Task 2: Unsupervised anomalous detection for machine
condition monitoring under domain shifted conditions,” in Proc. DCASE
Workshop, November 2021, pp. 186—190.

K. Dohi et al., “Description and discussion on DCASE 2022 Challenge
Task 2: Unsupervised anomalous sound detection for machine condition
monitoring applying domain generalization techniques,” in Proc. DCASE
Workshop, November 2022.

, “Description and discussion on DCASE 2023 Challenge Task
2: First-Shot unsupervised anomalous sound detection for machine
condition monitoring,” in Proc. DCASE Workshop, September 2023, pp.
31-35.

E. Zwicker and H. Fastl, Psychoacoustics: Facts and models.
Science & Business Media, 2013, vol. 22.

K. Minemura, T. Ogawa, and T. Kobayashi, “Acoustic feature repre-
sentation based on timbre for fault detection of rotary machines,” in
2018 International Conference on Sensing, Diagnostics, Prognostics,
and Control (SDPC). IEEE, 2018, pp. 302-305.

T. Mian, A. Choudhary, and S. Fatima, “An efficient diagnosis approach
for bearing faults using sound quality metrics,” Applied Acoustics, vol.
195, p. 108839, 2022.

Y. Ota and M. Unoki, “Anomalous sound detection for industrial
machines using acoustical features related to timbral metrics,” IEEE
Access, vol. 11, pp. 70884-70897, 2023.

A. Jiang et al., “Thuee system for first-shot unsupervised anomalous
sound detection,” DCASE Challenge, Tech. Rep., June 2024.

S. J. Mason and N. E. Graham, “Areas beneath the relative operating
characteristics (roc) and relative operating levels (rol) curves: Statistical
significance and interpretation,” Q. J. R. Meteorol. Soc., vol. 128, no.
584, pp. 2145-2166, 2002.

T. Nishida et al., “Description and discussion on dcase 2024
challenge task 2: First-shot unsupervised anomalous sound detection
for machine condition monitoring,” 2024. [Online]. Available:
https://arxiv.org/abs/2406.07250

K. Dohi et al., “MIMII DG: Sound dataset for malfunctioning industrial
machine investigation and inspection for domain generalization task,” in
Proc. DCASE Workshop, 2022.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in Proc. IEEE
CVPR), 2018, pp. 4510-4520.

Q. Kong, Y. Cao, T. Igbal, Y. Wang, W. Wang, and M. D. Plumbley,
“PANNSs: Large-scale pretrained audio neural networks for audio pattern
recognition,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 28,
pp. 2880-2894, 2020.

B. Elizalde, S. Deshmukh, and H. Wang, “Natural language supervision
for general-purpose audio representations,” in Proc. IEEE ICASSP, 2024,
pp. 336-340.

S. Chen et al., “BEATSs: Audio pre-training with acoustic tokenizers,”
in Proc. ICML, vol. 202, July 2023, pp. 5178-5193.

S. Baccianella, A. Esuli, and F. Sebastiani, “Evaluation measures for
ordinal regression,” in Proc. Int. Conf. Intel. System. Des. and Appl.
IEEE, 2009, pp. 283-287.

Springer



