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Abstract—Voice recognition is a powerful means to guard
against known bad actors in speech-based applications. Pitch-
shift software, however, is widely available and can facilitate the
disguise of a bad actor’s voice from such systems. We here provide
insight into the level of risk associated with different kinds of
pitch-shift by demonstrating how formant-preserving ones, such
as the time-domain pitch-synchronous overlap-add (TD-PSOLA),
have considerably lower impact on voice recognition than those
that do affect the formants, such as the waveform-similarity
overlap-add (WSOLA). Finally we propose a combination of two
complimentary methods, augmentation of the speaker models
and pitch-change detection using voice recognition features, to
prevent pitch-shift-enabled evasion in fraud detection systems.

Index Terms—pitch-shift detection, voice security

I. INTRODUCTION

The performance of voice recognition has increased sig-
nificantly over the past decade, mostly due to the use of
deep neural networks (DNNs) in combination with speaker
embeddings [1], commonly referred to as x-vectors [2], for
speech representation. This has led to a growing use of voice
recognition tools in fields such as forensics and user authen-
tication. Meanwhile, use of the voice channel for malicious
purposes has been growing at a fast pace. In the retail banking
industry, for example, fraudulent activity, such as account
takeover, often involves phone calls from malicious actors.
Voice identification, i.e. one-to-many voice recognition sys-
tems, with speaker models trained on speech utterances from
these actors can be an effective strategy for fraud detection.

However, a common tactic employed by malicious actors
to deliberately disguise their identity in the voice channel is
pitch-shift. It can be achieved either manually, for example,
by straining their voice so as to raise or lower the pitch, or
by using software [3]-[5] using one of many free application
available for smartphones and personal computers. Despite the
recent developments in voice conversion and speech synthesis
tools [6], pitch-shift remains a computationally cheap, readily-
available tool and an important problem to address in the
context of voice identification [4], [7].

Our focus here is on the different forms of software-
driven pitch-shift and their effects on voice identification, and
mitigating against those effects in fraud detection scenarios.
Note the inherent challenges are different to those in voice
spoofing and impersonation where the objective is to deceive
a voice verification system, that is a one-to-one match with
a claimed voice identity. This issue is studied extensively by,
for example, the ASVSpoof community [8], [9]. Instead we
propose solutions to enhance a voice identification system
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Fig. 1. Fraud detection system based on voice identification. The proposed
system is robust to small pitch-shift attacks with the assistance of enrolment
augmentation and larger ones via dedicated pitch-shift detection.

by (i) a speaker augmentation strategy for small pitch-shifts
and (ii) leveraging a dedicated pitch-change detection model
for large pitch-shifts. Such a system is shown in Fig. 1.
We concede that attacks uniquely detected by a pitch-change
model do not enable identification of the actor, but this is
acceptable as the system we are considering is primarily
concerned with fraud detection and not voice identification.

The main contributions of this work are as follows. In
Section III, we demonstrate that formant-preserving pitch-
shifting methods such as TD-PSOLA have only minor impact
on voice identification compared to non-formant preserving
methods such as WSOLA. Thus, the latter is more important
in voice identification evasion. In Section IV we show how
pitch-shift augmentation when training a speaker model for
voice identification is effective for subtle pitch-shift but less
so for the severe cases. On the other hand, we show that x-
vectors facilitate accurate pitch-shift detection compared with
standard speech features, such as the mel frequency cepstral
coefficients (MFCCs), and that the detection rate is high for
more severe cases of pitch-shift. Finally, we evaluate the pitch-
shift invariance of a fraud detection system created from these
two complimentary components.

II. RELATION TO PRIOR WORK

Pitch-shift detection has previously been linked to the
performance of speaker recognition [3], [5], [11]. However,
the detection of pitch-shift is typically treated as a standalone
problem rather than as part of a fraud detection system. The
body of existing work includes various feature representations
of the speech signal, including MFCCs [12], linear frequency
cepstral coefficients (LFCCs) [13] and features stemming from
the the source-filter speech production model [16] such as
formant values and the kurtosis of the linear prediction coding
(LPC) residual. The features have then been used to train
binary classifiers based on Gaussian mixture models (GMMs)
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or support vector machines (SVMs) [12]-[14], or one-class
classifiers [15]. We propose here to use x-vectors as an
alternative, promising signal representation with a low-cost
DNN classifier for pitch-shift detection.

In [14] the authors consider an end-to-end convolutional
neural network (CNN) approach that aims to estimate the
amount of pitch shift (in quantised semitones) instead of the
detection of pitch-shifted voice. The work in [11] investigates
several voice modification techniques and performs a basic
pitch-shift inversion in the attempt to improve speaker identi-
fication performance in the presence of pitch-shift. In [17] the
authors attempt to design pitch-insensitive speaker recognition
using sound field analysis. While this is potentially a promis-
ing idea, we demonstrate that there is a trade-off between
recognition accuracy and pitch-shift robustness. Instead, we
introduce the concept of pitch-shift robustness via augmenta-
tion in the speaker model training and we combine that with
the above-mentioned detector for an overall pitch-shift robust
fraud detection system.

Lastly, voice modification detection studies typically cate-
gorise different methods for voice pitch-shift by different audio
processing software packages [11], [15], or by considering
time-domain versus frequency-domain implementations [14].
While this categorisation may be relevant for some cases of
pitch-shift detection it is not as relevant when discussing the
effects of pitch-shift on voice identification. Thus, on the
contrary to the above, we demonstrate that it is more relevant
for voice identification to categorise methods into formant-
preserving and non-formant-preserving. WSOLA [18] is the
classical example of the latter, while the former is typically
exemplified by pitch-synchronous overlap-add (PSOLA) with
implementations both in the time domain, TD-PSOLA and the
frequency domain, FD-PSOLA [19].

III. EFFECT OF PITCH-SHIFT ON VOICE IDENTIFICATION

Given the link between long-term formant distributions and
speaker identity, we expect that a pitch-shift operation that
alters formant frequencies is likely to have a greater impact
on speaker identification compared to one that preserves the
formants. The x-vector approach to speaker embeddings, based
on a deep neural network, represents the state-of-the-art in
speaker recognition [1], [2]. The recently introduced ECAPA-
TDNN [10] architecture is one-such example that exhibits
high speaker recognition performance on established challenge
datasets. Below we study the effect of pitch-shift on speaker
identification using ECAPA-TDNN x-vectors.

We applied WSOLA, as an example of a non-formant-
preserving method of pitch-shift, and TD-PSOLA, as an ex-
ample of a formant-preserving form of pitch-shift, to a subset
of TIMIT utterances [20]. A gender balanced set of 136 male
speakers and 136 female speakers was randomly selected from
the training partition of TIMIT. With ten utterances available
per speaker we randomly-selected three utterances for training
(a single combined embedding feature was used to model each
speaker, see below) and the remaining seven for prediction. In
this way, we can evaluate voice identification accuracy with

respect to 517,888 match estimates (1,904 = 7 x 272 positive
matches and 51,5984 = (271 x 7) x 272 negative matches).

To assess WSOLA and TD-PSOLA in a consistent manner
we define the pitch-shift ratio 5. An increase in pitch is
denoted by $ > 1 and a decrease is denoted by 5 < 1. A value
of 5 = 1 denotes no pitch-shift. In the case of TD-PSOLA
this denotes the multiplicative parameter that is applied to the
estimated pitch. That is, for a speech utterance where z(n) is
the estimated pitch vector ! for frame n we define

zZ(n) = Bz(n) (D

as the modified pitch vector used to synthesize the
pitch-shifted speech via the Praat implementation [22] of
TD-PSOLA. 2 In the case of WSOLA, we used the implemen-
tation available in SoX [24] where the pitch-shift parameter
is related to the shift in 100ths of semitones or ‘cents’. This
value can be obtained from the pitch-shift ratio as

s = 12001og,(B) 2)

All pitch-shift operations were performed on audio sampled
at 16 kHz, matching the sampling rate of the ECAPA-TDNN
training data. As we shall explain in the next section, it is
also required to establish the impact of pitch-shift at 8 kHz.
As such, a resampling operation was applied to the clean
and pitch-shifted audio to obtain a dataset sampled at 8 kHz.
We extracted x-vectors for all speech utterances, training
and prediction. As three x-vectors were made available for
training, a single x-vector per speaker model was obtained by
component-wise averaging, i.e.

T — 2T
© S wlle

where x; denotes the embedding extracted for training utter-
ance ¢ and || - ||z the Frobenius norm.

To simulate the effect of a disguised attacker, we applied dif-
ferent degrees of pitch-shift to the prediction utterances using
WSOLA and TD-PSOLA and extracted the corresponding x-
vectors. Distances were calculated as the dot product between
the normalised model and prediction x-vectors, i.e. the cosine
distance.

We evaluated the impact of pitch-shift on voice identifica-
tion via the equal error rate (EER) between the positive and
negative distances. Table. I shows the results for the WSOLA
and TD-PSOLA methods. As a baseline, the EER for the clean
16 kHz dataset was 0.2% and 0.9% for the 8 kHz dataset.
In the case of WSOLA we observe that the more extreme
pitch-shift ratios have a large impact on the EER, 37.8%
(8 = 0.7, 8kHz) and 29.5% (8 = 1.3, 8kHz). However
we note, as expected, that the impact to the EER is not as
significant for TD-PSOLA, 3.9% (8 = 0.7, 8 kHz) and 3.1%
(B = 1.3, 8 kHz). We can therefore conclude that non-formant-
preserving operations such as WSOLA pose a greater threat
to speaker identification.

3)

'In the case of TD-PSOLA we used [21] to estimate the pitch.
>The parselmouth Python wrapper [23] was used to implement Praat.
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TABLE I
Pitch-shift and voice identification. EQUAL ERROR RATES (%) FOR
DIFFERENT PITCH-SHIFT METHODS WSOLA
(NON-FORMANT-PRESERVING) AND TD-PSOLA
(FORMANT-PRESERVING), PITCH-SHIFT RATIOS (/3) AND SAMPLING
FREQUENCIES (8 kHz, 16 kHz). NOTE THE ROW WHERE (3 = 1.0 DENOTES
THE BASELINE EQUAL ERROR RATE WITH NO PITCH-SHIFT.

B WSOLA  WSOLA TD-PSOLA TD-PSOLA

16 kHz 8kHz 16 kHz 8kHz
0.7 37.8 37.8 0.9 3.9
0.8 22.1 22.9 0.6 2.2
0.9 2.5 4.9 0.5 1.7
1.0 0.2 0.9 0.2 0.9
1.1 2.9 5.7 0.5 1.1
1.2 15.5 18.7 0.6 2.5
1.3 28.4 29.5 0.9 3.1

In the event a malicious actor is using WSOLA for evasion,
the results in Table. I highlight an important concern. Even
when small pitch-shifts are employed the EER is still high
(5.7% for g = 1.1 and 4.9% for 5 = 0.9 in 8 kHz scenario).
Exploring the receiver operating characteristic (ROC) curves
for the same set of results — not shown here due to space
constraints — the detection rate of small pitch-shifts is low even
at a low false positive rate (FPR). For instance it was found
that the true positive rate (TPR) is 20% at 0.1% FPR when
B = 1.1. This illustrates how voice identification systems are
not equipped to cater for WSOLA-type attacks.

IV. PREVENTION STRATEGIES

As we have established in the previous section, in
the context of protecting voice identification systems from
threats, catering for non-formant-preserving pitch-shifts such
as WSOLA is paramount as these have the greatest impact
on speaker embeddings. We investigate two strategies that can
operate in parallel: (i) augmentation of the speaker model em-
beddings with pitch-shift, and (ii) a pitch-shift-detection model
which exploits the discriminative nature of the embeddings
themselves.

A. Speaker model augmentation

Data augmentation can better equip systems to cater for
unseen data. We thus revisit how the speaker model embedding
is calculated in Section III and replace as

B~

s DT+ D205 Tig,

e= B ~
IIZixﬁZiZj xi,ﬁ,-”F

where 73, denotes embeddings obtained from WSOLA
pitch-shift operations of the utterances used for training. We
experimented with using different sets of values for aug-
mentation: By = {0.9,1.1}; B; = {0.8,0.9,1.1,1.2} and
By = {0.7,0.8,0.9,1.1,1.2,1.3}. In Table II we show how
the voice identification EER is impacted by the proposed
augmentation strategy in the event of a WSOLA evasion
attack. Note we focus specifically on the results corresponding
to a 8 kHz sampling frequency. We observe that as we include
small changes to pitch in the training data, i.e. augmentation

“4)

TABLE II
Pitch-shift and voice identification with speaker model augmentation.
EQUAL ERROR RATES (%) FOR WSOLA EVASION ATTACKS DERIVED
FROM AUDIO SAMPLED AT 8 kHz. THE COLUMN “NONE” DENOTES NO
AUGMENTATION (MATCHES RESULTS SHOWN IN TABLE I). OTHER
COLUMNS SHOW THE IMPACT TO EER BY AUGMENTING THE MODEL
EMBEDDING, AS DESCRIBED IN EQN. (4), USING DIFFERENT (3 SETS (B,
B1, B2).

speaker model augmentation
B none Bo B1 Bo
0.7 378 36.1 306
0.8 229 144 7.2 7.1
0.9 49 1.7 1.9 32
1.0 0.9 1.0 1.4 2.6
1.1 5.7 2.4 29 4.5
10.7 59 5.6
241 154

set By, it improves the EER for small pitch-changes (8 = 0.9,
B = 1.1). Furthermore this improvement comes at little cost
to the EER when the attacker is not using pitch-shift, observe
that the EER for 8 = 1 increases only from 0.9% to 1.0%. Ex-
amining receiver operating characteristic (ROC) curves — not
shown due to space constraints — we found B, augmentation
improves the TPR at 0.1% FPR from 20.4% to 72.1%. This
further emphases the gains of B augmentation to mitigate
against small pitch-changes while retaining performance levels
for instances with no pitch-shift.

On the other hand, while more aggressive augmentation
strategies (B1, Bs) enable reductions in EER for large pitch-
shifts (i.e. the EER is reduced from 29.5% to 10.9% for
B = 1.3 using B), they come at the cost of increased
EER when no pitch-shift is used. In other words, model
augmentation via the By strategy helps to address smaller
pitch-shifts but more aggressive ones detract from the overall
performance of the system. We therefore require a separate
strategy for medium and large pitch-shifts.

B. Pitch-shift detection using speaker embeddings

While the sensitivity of speech embeddings to WSOLA-
type pitch-shifts is on the one hand a disadvantage, it presents
an opportunity to exploit the speaker embeddings themselves
as a discriminative feature. We propose a pitch-shift detection
model using ECAPA-TDNN x-vectors.

We applied pitch-shift to utterances sampled at 16 kHz, and
then resampled all the data to 8 kHz. The motivation for the
downsampling operation is to provide reliable results with
respect to negative pitch-shifts (5 < 1). As part of negative-
pitch WSOLA operations downsampling is applied that leaves
an absence of spectral activity in the higher frequencies of the
output. This is an artefact that could be easily exploited by
a model trained on x-vectors or any features that characterise
higher frequencies if using the 16 kHz data. However, due to
noise or downsampling that would likely occur post-WSOLA
in real-world conditions, this is not an artefact that could
be reliably detected and therefore should not be modelled.
By downsampling the pitch-shifted and clean speech data we
remove this artefact to prevent its usage in training.
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For training we employed the training partition of the
TIMIT database with 9,240 randomly-selected pitch-shift ra-
tios based on a uniform distribution from the ranges U (8 =
0.6, =0.9) and U(3 = 1.1, 8 = 1.4).3 The model employed
is a low-complexity one comprising three densely-connected
layers (128, 32 and 1 units respectively), where the input
is the ECAPA-TDNN x-vector and the output is a scalar: 1
if the input is pitch-shifted else 0. Model optimization was
performed with respect to the mean square error with mini-
batch gradient descent using the RMSProp optimizer.

For comparison, we consider models with similar architec-
tures trained on related feature sets. Our motivation for using
x-vectors as a discriminative feature stems from the idea that a
voice embedding is a data-driven representation of the speech
production model for a given speaker. Previous work on pitch-
shift detection [15] has sought to use more classical speech-
production features derived from the source-filter model [16].
The so-called speech anomaly detection (SAnD) utilises pitch
as well as formants and residual signals derived from LPC
analysis. It was shown that such an approach matches the
detection performance of human listeners. While in [15] the
authors investigate and compare one- and two-class solutions
trained using a SVM, we here wish to focus on the considered
features only. For the same training dataset as above we
extracted the mean, standard deviation, median and median
absolute deviation of the pitch, the first two formants, and
the kurtosis of the LPC-residual over time giving a 16 x 1
feature vector per speaker. * Accounting for the difference in
the input dimension, we trained a SAnD-model using the same
architecture as the proposed one.

MFCCs are a concise representation of acoustic features
widely used in a range of speech applications [26]. We
obtained 20 MFCCs for overlapping frames® for the same
training dataset used by both the proposed x-vector approach
and SAnD. We calculated the mean and standard deviation
of both the coefficients and the delta coefficients, i.e. the
first derivative, along time. Discarding the low-frequency
coefficient, this yields a 76 x 1 feature vector per speaker.
Again accounting for the difference in the input dimension, we
trained an MFCC-model using the same proposed architecture.

In Table IIT we compare the EERs obtained using SAnD
features, MFCC features and x-vectors for different degrees
of pitch-shift. Testing was conducted on the 1680 utterances
from the test partition of the TIMIT database. Clearly the EER
is lowest using x-vectors for each considered pitch-shift ratio.
Another observation is that for each of the considered feature
sets, the detection performance is lowest for pitch-shift ratios
close to one (8 = 0.9, 8 = 1.1); this result is consistent
with previously-reported findings [15]. For moderate (5 = 0.8,
£ = 1.2) and more extreme pitch-shifts (8 = 0.7, 8 = 1.3) the
detection rates are much higher with x-vector EERs < 2.1%.

3Note we balanced the training data with respect to gender.

4With respect to the SAnD features, a frame size of 20 ms was used for
the LPC analysis yielding formant estimates and the LPC residual signal. A
frame size of 40 ms was used for pitch estimation using YIN [25].

SMFCCs were calculated using a frame size of 40 ms with 20 ms overlap.

TABLE 111
Pitch-shift detection. EQUAL ERROR RATES (%) IN THE DETECTION OF
WSOLA PITCH-SHIFTS USING DIFFERENT FEATURES FOR SIX
PITCH-SHIFT RATIOS 3 APPLIED TO THE TEST PARTITION OF THE TIMIT
DATASET (RESAMPLED TO 8 kHz AFTER PITCH-SHIFT OPERATIONS).

B SAnD MFCCs x-vectors
0.7 9.7 7.5 0.9
0.8 19.7 9.6 1.2
0.9 36.3 235 11.3
1.1 38.0 29.0 13.7
1.2 23.7 11.8 2.1
1.3 15.6 9.2 1.0

We next tested the x-vector approach on a larger dataset
of 104,014 utterances from the 360 partition of the Lib-
riSpeech corpus [27] to evaluate performance for a wider
range of operating thresholds. Embeddings were obtained from
WSOLA-shifted utterances resampled to 8 kHz from 16 kHz
as described previously. We experimented with adjusting the
range of the training data from U(8 = 0.6, = 0.9) and
Up=11,=14)to U(B = 06,8 =0.8) and U(S =
1.2, = 1.4) to explore impact on detection performance.
ROC curves — not shown due to space constraints — reveal
that removing small pitch-changes from the training data, i.e.
U(B=0.6,6=0.8)and U(B = 1.2,3 = 1.4), enables better
detection rates for operating points, e.g. FPRs < 1%.

C. Combined system

We evaluated the gains of a malicious attacker detection
system using 104,014 utterances from the 360 partition of
the LibriSpeech corpus [27]. Embeddings were obtained from
WSOLA-shifted utterances resampled to 8 kHz from 16 kHz
as described previously. We randomly selected six speakers
(three female) as malicious actors. For each malicious actor,
we assumed 10 of the original utterances were available for
training and the remaining utterances were unseen attacks for
testing (612 total across all speakers). Large (8 = 1.3) and
small (8 = 1.1) pitch increases were applied to the attack
utterances such that the total number of attack utterances was
1,224. All other 103,342 utterances from the dataset were used
as the negative set.

Standard (no augmentation) and augmented speaker models
were trained on each of the six malicious actors;® the voice
identification score was taken as the maximum score from
the models. The combined system score is a weighted aver-
age of the voice identification score and the pitch-detection
score.” In Fig. 2 we show the ROC curves using only the
standard voice identification system, and combined systems
(voice identification and pitch-shift detection) with and without
augmentation. It is clear how the standard voice identification
system fails detect the vast majority of attacks at operating
points corresponding to FPRs below 1%. As expected, the
combined systems fare better. In particular the advantage of

%The speaker models was augmented with the By set.

"The pitch-detection model was trained on the TIMIT corpus, as described
in Section IV-B, with U(8 = 0.6,8 =0.8) and U(B = 1.2,8 =1.4).
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Fig. 2. Combined System. ROC curves for large (5 = 1.3) and small
(B = 1.1) pitch-shift attacks using a standard voice identification system, and
dual-systems comprising (i) voice identification and pitch-shift detection and
(ii) augmented voice identification and pitch-shift detection.

augmenting the speaker models is clear; it facilitates a 20%
absolute increase in detection at an FPR of 0.1% within the
combined framework.

V. CONCLUSIONS

In the evaluation of the threat posed by pitch-shift to
voice recognition, specifically voice identification, we have
established that the main concern encompasses operations that
do not preserve formant information. We have shown that even
small changes in pitch (3 = 1.1, 8 = 0.9) using such methods
facilitate evasion. A dual-solution strategy is proposed. On the
one hand, we show how a pitch-detection model, exploiting the
sensitivity of speech embeddings to such attacks, can reliably
detect medium and large changes in pitch (3 < 0.8, 8 > 1.2).
On the other hand, for smaller changes in pitch, augmentation
of the training data of the voice models is a more appropriate
solution.
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