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Abstract—Kolmogorov—Arnold Networks (KAN) have recently
emerged as a promising alternative to traditional multilayer
perceptrons, offering superior performance and greater inter-
pretability. In this work, we explore the potential of KAN by
demonstrating its ability to enhance audio deepfake detection and
robustness. To further improvement, we employ multi-level token
classification by leveraging speech representations of foundation
model. Experimental results across multiple evaluation datasets
demonstrate that our approach enhances both specialization and
generalization. These findings provide potential insights into the
integration of KAN, laying the way for future research in this
domain.

Index Terms—anti-spoofing, kolmogorov-arnold networks,
self-supervised learning, audio deepfake detection

I. INTRODUCTION

Recent advancements in Text—to—Speech (TTS) and Voice
Conversion (VC) technologies have significantly improved the
authenticity and naturalness of synthetic speech, making it
increasingly challenging to distinguish from genuine human
speech, even for State—Of-The—Art (SOTA) machine learning
systems [1]. The rapid progress in speech generation has
raised serious concerns, particularly regarding its potential
for fraudulent activities and identity theft. Consequently, re-
search in anti-spoofing and synthetic speech detection has
advanced rapidly, focusing on distinguishing genuine speech
from spoofed audio, with a strong emphasis on securing Au-
tomatic Speaker Verification (ASV) systems. The ASVspoof
challenge series [1]-[3] has emerged as a crucial benchmark
for developing and evaluating robust countermeasures.

Advanced deep neural networks, such as Transformer [4],
Conformer [5], and architectures based on the traditional
MultiLayer Perceptron (MLP), are widely employed for ASV.
These models incorporate learnable linear layers combined
with fixed nonlinear activation functions (e.g., ReLU). The
emergence of Self-Supervised Learning (SSL) has led to the
development of speech foundation models [6]—[8], which serve
as powerful feature extractors for various downstream speech
tasks, including Audio Deepfake Detection (ADD) [9]-[13].
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Recently, KAN [14] has emerged as a promising alternative
to traditional MLP, offering improved performance and inter-
pretability, particularly for symbolic tasks. Unlike MLP, KAN
replaces fixed nonlinear activation functions and learnable
linear layers with learnable nonlinear activation functions.
However, its applications in other machine learning domains,
particularly speech processing [15]-[17], remain largely unex-
plored. Despite challenges in integration across various fields,
KAN has demonstrated promising potential in ADD [18].

In this work, we investigate the integration of KAN and its
potential to improve the performance of ADD. Specifically,
we utilize the SOTA Conformer—based with Temporal-Channel
Modeling (TCM) module [11] for our experiments. The con-
tributions of our work are summarized as follows:

o Leverage the full potential of pre—trained SSL model
to extract rich and informative representations for
multi—level token classification.

« Enhance the baseline model by integrating Multi-Head
Attention Pooling (MHAP) [19] for improved multi-level
token enrichment.

o Introduce KAN as an additional layer to better capture
relevant feature for effectively detecting ADD.

II. PRELIMINARIES

A. Kolmogorov—Arnold Networks

While the MLP is based on the universal approximation
theorem [20], KAN is inspired by the Kolmogorov—Arnold
representation theorem. This theorem states that any multi-
variate continuous function f : [0,1]™ — R can be expressed
as a finite composition of univariate functions and summa-
tions. Specifically, a function f(z) = f(x1,...,2,) can be
represented as:

2n+1

f(z) = Z P, <Z ¢q,p(xp)> ) (H
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where ¢, : [0,1] — R and ®, : R — R are continuous
functions. In other words, for an input x, a KAN with L layers
is structured as:

KAN(z) = (P o®Pp_10-- 0Py 0Pq)(x), 2)

where ®;, for | € {1,..., L}, denotes a KAN layer. The
output dimensions across layers are defined as [nq,...,ng].
The transformation of the j-th feature in the /-th layer follows:

ny—1

Ty = Z Gr-1ji(Ti-14), J=1,...,m, 3)
i=1

where ¢ consists of two components including a spline
function and a residual activation function, both parameterized
by learnable weights w; and wy:

¢(x) = wpSiLU(x) + wsSpline(z). 4)

Here, Spline(z) is a linear combination of B-spline basis
functions, given by:

Spline(x) = Y a; Bi(x), (5)

where B;(x) represents the B—spline basis functions, while
the coefficients «; determine how these components combine
to approximate the target function.

B. FastKAN

FastKAN [21], an optimized variant of the KAN model,
enhances computational efficiency by replacing third—order
B-spline basis functions with Radial Basis Functions (RBFs)
utilizing Gaussian kernels. RBFs [22], [23] are real-valued
functions that depend on the radial distance from a center point
and are commonly used in tasks like function approximation
and pattern recognition. The key idea behind RBFs is to
construct a function as a weighted sum of radially symmetric
functions, each centered at a specific location in the input
space. An RBF network is formulated as:

f@) = wig(lz — cl), 6)
=1

where w; are learnable coefficients, and ¢ represents the
RBFs, which depends on the distance between x and the center
¢;. The Gaussian RBF is defined as:

r2
= - 7
o(r) eXp( 2h2>7 (7)
where r denotes the radial distance, and h controls the
function’s spread, determining the influence of each center.
III. PROPOSED METHOD

Our baseline architecture relies on the XLS-R with
Conformer-based classifier and TCM module [11].
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Fig. 1. General architecture of our ADD system. S refers to the stacking
operation. s refers to the splitting operation. c refers to concatenation.

A. XLS-R speech foundation model

XLS-R [8], a variant of Wav2Vec2.0 [7], is designed for
self-supervised cross-lingual speech representation learning.
Trained on over 436,000 hours of multilingual speech data
from 128 languages, it extracts high-quality representations
directly from raw audio. The feature encoder comprises 7
convolutional layers to reduce complexity while preserving
speech features, followed by 24 Transformer encoder layers
to capture long-range temporal dependencies.

After passing the audio waveform through the feature en-
coder, we obtain /V hidden states over 1" frames with D feature
dimension, including the projection from the last convolutional
layer. These hidden states H = (hg, ..., hy_1) € RVXTxD
are projected to a lower dimension D', yielding H =
Proj(H) € RNVXT*P’ The hidden states are then concatenated
along the D’-dimensional space, forming C' = N x D', and
processed as:

XssL = SeLU([Hg, ..., H'x_1]) € RT*C, (8)

B. Conformer with temporal-channel multi-level token

As with the original design [10], a learnable classifica-
tion token Xcrs € RC is prepended to form the Xeeq =
[Xcrs, Xssi] € RTHDXC pefore being fed into the Conformer
model consisting of L blocks. Since Xgg1 has been processed
with multi-level SSL representations, we refer to the resulting
token as a multi-level token classification. To improve the
Multi-Head Self-Attention (MHSA) mechanism for capturing
temporal and channel dependencies, Truong et al. [11] pro-
posed replacing the standard MHSA in each conformer block
with a TCM module [11]. This TCM module includes the head
token generation, MHSA, and classification token enrichment.

To generate head tokens, X4 is reshaped into M segments
of d = C/M, pooled, concatenated and projected back to C
dimension. To distinguish head tokens from input tokens, a
learnable embedding is concatenated with the input sequence,
forming a new temporal-channel token Xtc € R(T+M+1)xC
before passing to MHSA. In our approach, we retain the over-
all architecture but introduce modifications to the classification
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token enrichment step. Specifically, instead of averaging the
temporal token Xpr € RT*¢ and head token Xyp € RM*C
as in the original method, we replace these with MHAP means
pmuap [19].

Given an input G = (G4, ...,Gr) with G; € R, MHAP
splits G into k heads. We define G, = [Gy1,. .., Gy x| with
Gt; € RE/*. Each j-th head is computed as:

eXp G )
; Zz 1eXP(ngu3),

The final representation is the concatenation of all heads
¢ = [c1,...,ck]. We enrich the multi-level X¢rs token for
classification as follows:

j=1,....k (9

Xcs
C. Integration of KAN

Finally, Xcrs is extracted from the Conformer model’s
output X4 and passed to a classifier to determine if the input
speech is genuine or spoofed. There, we investigate replacing
the traditional linear layer with KAN as the prediction head.
Additionally, we explore KAN in a manner similar to MLP by
stacking multiple KAN linear layers. In our final experiment,
we combine both the traditional linear layer and the KAN
linear layer, with the latter operating in a low-dimensional
space to capture relevant features before classification. For all
experiments, we employ FastKAN with various configurations,
as illustrated in Figure 2.

= Xcis + pvuap(Xtr) + pvuap(Xur)- (10)

IV. EXPERIMENTAL SETUP
A. Dataset and performance metrics

We use the ASVspoof 2019 Logical Access (19LA) training
set for model development and the development set for perfor-
mance evaluation. Both subsets consist of genuine speech and
spoofed samples, the latter generated via TTS and VC attacks,
though they exhibit a significant class imbalance (about 10%
bona fide and 90% spoofed). Model performance is assessed
on 19LA [3], ASVspoof 21 Logical Access (21LA), and
DeepFake (21DF) evaluation sets [2]. For out—of-domain
evaluation, we use the In-The-Wild (ITW) dataset [24], where
spoofed speech is sourced from YouTube. Performance is
measured using the Equal Error Rate (EER) [25] where a lower
EER indicates a reliable biometric security system.

B. Implementation details

In this work, we explore the integration of FastKAN-based
classifier in different configurations as described in Figure 2.
Firstly, we replace the traditional linear classification layer
with a FastKAN linear layer. Next, we examine the impact of
using multiple FastKAN linear layers for classification. Lastly,
we investigate a hybrid approach that combines traditional
linear layers with the FastKAN linear layer. Each experiment
is conducted with different grid sizes € {2,4, 8}.

We use the pretrained XLS-R model from Huggingface
and employ 4 Conformer encoder blocks with 4 attention

TABLE I
FASTKAN CONFIGURATIONS WITH DIFFERENT GRID SIZES EVALUATED
ACROSS 19LA, 21LA, 21DF, AND ITW DATASETS.

Catesor Grigs _JOLA _ 21LA  2IDF _ ITW
gory ! EER% EER% EER% EER%
Traditional linear — 0.26 3.95 1.81 5.87
2 0.52 6.59 2.45 5.44
FastKAN linear 4 0.09 4.15 1.87 6.35
8 0.37 3.63 1.74 6.22
2 1.94 3.62 221 5.66
mulﬂ?:;%fglear 4 0.18 3.95 2.17 5.67
8 0.89 3.60 2.96 6.64
. . 2 0.11 2.29 1.49 5.31
Mixted traditional
‘ ona 4 0.23 4.78 1.86 7.06
and FastKAN linear ¢ 023 5.66 157  5.10

heads as this configuration yielded the best results in the
original method [11]. Audio inputs are dynamically padded
to match the longest sample in each batch of size 5. Training
is conducted using the Adam optimizer with a learning rate
of 3 x 1072 and a weight decay of 1 x 10~*. To address class
imbalance, we apply weighted cross-entropy loss, assigning a
weight of 0.9 to bona fide samples and 0.1 to spoofed samples.
Models are fine-tuned for three epochs, selecting the best-
performing checkpoint on the development set for evaluation.
All experiments are conducted on a single A100 GPU.

To enhance model robustness, we apply RawBoost [26] to
the training data, incorporating various noise augmentation
techniques. These include linear and nonlinear convolutive
noise, impulsive signal-dependent additive noise, stationary
signal-independent additive noise, and randomly colored noise.
All augmentation strategies are combined during training to
improve generalization.

V. RESULTS AND ANALYSIS
A. FastKAN linear as a replacement of traditional linear

To investigate the impact of FastKAN, Table I presents the
performance across different grid sizes. Replacing the baseline
with FastKAN linear improves expressiveness, with larger grid
sizes enhancing performance in—domain. FastKAN linear (8
grids) achieves a lower EER than the traditional linear and
other grids on 21LA (3.63%) and 21DF (1.74%). However,
on ITW, performance degrades as the grid size increases,
indicating potential overfitting and reduced generalization.

B. FastKAN multilayer linear classifier

The results indicate that increasing the number of grids
degrades performance for both in—-domain and out—of-domain
data, while smaller grids yield slightly better results. Specif-
ically, FastKAN linear (2 grids) achieves 3.62% EER on
21LA, comparable to the traditional linear (3.95%), but larger
grids (8 grids) lead to worse performance on 21DF (2.96%
vs. 1.81%) and ITW (6.64% vs. 5.87%). This suggests that
using FastKAN as a classifier does not enhance performance,
as stacking multiple layers hinders both specialization and
generalization.
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Fig. 2. Different classifier configurations evaluated.

C. FastKAN linear mixted prediction head

In our final experiments, we combined FastKAN linear
layers with standard Linear layers, using FastKAN to model
high—level features in a low—dimensional space (64), as il-
lustrated in Figure 2. The results in Table I demonstrate
that incorporating FastKAN linear with a small grid size
enhances the model’s ability to capture relevant feature details.
Notably, FastKAN linear (2 grids) achieves the lowest EERs
on 21LA (2.29%) and 21DF (1.49%), outperforming the tradi-
tional linear (3.95% and 1.81%, respectively). Additionally, the
mixed approach maintains strong performance on ITW, with
FastKAN linear (8 grids) achieving the best EER (5.10%), in-
dicating improved generalization. These findings suggest that
combining FastKAN linear with traditional layers balances
expressiveness and robustness across different datasets. Since
this configuration yields the best results, we adopt it for the
remainder of our work.

D. In—-domain attacks analysis

Figure 3 shows the performance (EER%) across various
TTS-based (A07 to A16) and VC-based (A17 to A19) attacks,
evaluated under different conditions (C1-C7) [2] on 21LA,
with a pooled performance summary at the end. The model
performs well with TTS-based attacks, particularly for A13,
which achieves the lowest pooled EER of 0.52%. This suggests
the model is effective at detecting these types of deepfake
in most conditions. However, VC-based attacks like A18
and A16 present more challenges, with higher pooled EERs
of 2.26% and 1.35%, respectively, indicating that the model
struggles to detect these attacks effectively. Notably, A10
and All from the TTS group show higher EER (4.25% and
2.71%), yielding to more difficulty in distinguishing deepfake
in these cases. The overall pooled performance of 2.29%
suggests that while the model is successful at detecting certain
types of attacks, it requires further refinement to handle more
complex TTS and VC-based deepfakes.

Figure 4 summarizes our model’s performance (EER %)
on 21DF across different conditions (C1-C9) and vocoder
types [2]. The results show that our model performs best
on neural non—-AutoRegressive (AR) vocoders, achieving a
pooled EER of 0.50%, indicating strong robustness and
generalization. In contrast, detecting deepfakes generated
with neural AR vocoders remains the most challenging

EER (%) Heatmap Across Conditions and Attack Types
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Fig. 3. Heatmap of performance (EER %) of our system with evaluated on
21LA evaluation set. AO7 to A16 denotes TTS—based attacks, and Al7 to
A19 denotes VC-based attacks.
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Fig. 4. Heatmap of performance (EER %) of our system with evaluated on
21DF evaluation set. “Wav.Concat.” denotes waveform concatenation and AR
denotes autoregressive.

with the highest pooled EER of 2.74%. Performance on
traditional vocoder (0.74%) and Waveform Concatenation
(“Wav.Concat.”) (0.91%) vocoders is moderate, while Un-
known vocoders result in an EER of 1.45%, suggesting that
unseen vocoder types still present difficulties.

TABLE 11
OVERALL PERFORMANCE COMPARISON WITH THE SOTA SYSTEMS
ACROSS MULTIPLE DATASETS SUCH AS 19LA, 21LA, 21DF, AND ITW
EVALUATION SETS.

19LA 21LA 21DF ITW

Model EER(%) EER(%) EER(%) EER(%)~ ‘arams (M)
WavLM+MFA [27] 042 5.08 256 - N/A
WavLM-+AttM [28] 0.65 350 3.19 - N/A
XLS-R+MoE [29] 0.74 2.96 254 12.48 341
XLS-R+AASIST [9] - 0.82 2.85 - N/A
XLS-R+AASIST2 [30] 0.15 1.61 277 - N/A
XLS-R+Conformer+TCM [11], [31] - 1.03 2.06 7.79 319
XLS-R+SLS [32] - 2.87 1.92 7.46 N/A
XLS-R+LSR+LSA [33] 0.12 1.05 1.86 554 N/A
XLS-R+DuaBiMamba [31] - 0.93 1.88 6.71 319
KAN-based Model (Proposed) 0.11 2.29 1.49 531 317
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E. Comparison with the state—of-the—art systems

As shown in Table II, our proposed KAN—based model with
multi-level token classification achieves SOTA performance
on multiple datasets. Comparing to the baseline [11] which
benefits the checkpoint averaging, our approach leads to a
slightly higher EER on 21LA (2.29%) but outperforms on
21DF (1.49%). On ITW, it also sets a new benchmark with
5.31% EER, improving robustness to real-world conditions.

VI. CONCLUSION

In this work, we investigate the integration of Kol-
mogorov—Arnold Networks into speech deepfake detec-
tion, yielding promising results and significantly improv-
ing model performance, particularly for both in—domain and
out—of—domain data. Our experiments with different grid sizes
show that smaller grid configurations offer better performance
by modeling high—level details, enhancing specialization with-
out leading to overfitting. Additionally, combining KAN to
traditional linear layers with multi-level token classification
contributes to improved generalization and robustness for
detecting unseen deepfake samples. Overall, our findings
suggest that KAN-based classifier hold much potential for
future research aimed at further enhancing robustness across
various attacks, with exploring adaptive grids and hybrid
architectures. The source code will be made available on
https://github.com/hoanmyTran/kan_spoofing_detection.
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