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Abstract—Existing Audio Deepfake Detection (ADD) systems
often struggle to generalise effectively due to the significantly
degraded audio quality caused by audio codec compression
and channel transmission effects in real-world communication
scenarios. To address this challenge, we developed a rigorous
benchmark to evaluate the performance of the ADD system under
such scenarios. We introduced ADD-C, a new test dataset to
evaluate the robustness of ADD systems under diverse commu-
nication conditions, including different combinations of audio
codecs for compression and packet loss rates. Benchmarking
three baseline ADD models on the ADD-C dataset demonstrated
a significant decline in robustness under such conditions. A novel
Data Augmentation (DA) strategy was proposed to improve the
robustness of ADD systems. Experimental results demonstrated
that the proposed approach significantly enhances the perfor-
mance of ADD systems on the proposed ADD-C dataset. Our
benchmark can assist future efforts towards building practical
and robustly generalisable ADD systems.

Index Terms—Audio Deepfake Detection, Audio Signal Pro-
cessing, Audio Codec, Robustness, Wireless Communication.

I. INTRODUCTION

Recent advancements in Al-based Text-to-Speech (TTS)
and Voice Conversion (VC) technology make it easier to
synthesise natural, human-like speech from text or audio inputs
[1]. Such technology significantly enhances the convenience in
various aspects of our daily lives, e.g., e-book readers, voice
assistants, and smart home devices. However, the misuse for
malicious purposes poses emerging threats and challenges to
security [2]. In 2020, fraudsters used Al-generated deepfake
audio to impersonate a company’s director, deceiving a branch
manager into transferring $35 million [3].

In response to such attacks, Audio Deepfake Detection
(ADD) aims to identify Al-generated synthesised audio to
determine its authenticity. Recent advancements, such as the
Audio Speaker Verification (ASV) spoof challenge series
[4], have significantly contributed to the progress of ADD
by providing standardised benchmarks and encouraging the
development of detection models. These efforts have led
to notable improvements in detecting deepfake audio across
various generation techniques.

However, existing methods are trained on clean, high-
quality audio and often fail to generalise well to real-world
communication scenarios, where audio codec compression and
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channel transmission effects degrade audio quality [5]. These
challenges are particularly evident in wireless communications
based on Voice over Long Term Evolution (VOoLTE) [6] and
Voice over Internet Protocol (VoIP) systems [7]. The lack of
robustness highlights the need for more practical ADD systems
capable of effectively detecting deepfake audio in real-world
communication scenarios.

Therefore, this paper focuses on addressing the perfor-
mance degradation of ADD systems caused by audio codec
compression and channel transmission effects in real-world
communication scenarios. By simulating the wireless commu-
nication environments, we systematically analyse and improve
the robustness of ADD systems. Our contributions are as
follows:

o To the best of our knowledge, this is the first study to
systematically investigate the impact and robustness of
real-world communication scenarios on ADD systems.

¢ A new benchmarking framework is designed to systemat-
ically train and evaluate the robustness of ADD systems
under various communication conditions.

o We propose a new test dataset, ADD-C, to assess the
performance of ADD systems in real-world communica-
tion scenarios. ADD-C includes six evaluation conditions:
one clean condition and five real-world communication
conditions. Each real-world condition includes simulating
audio codec compression using six widely used speech
codecs in VOLTE and VoIP communication systems, as
well as simulating channel transmission effects under
five different Packet Loss Rates (PLRs). Benchmarking
three baseline ADD models reveals a significant decline
in performance, highlighting the need for improving the
robustness of ADDs.

¢ A novel Data Augmentation (DA) strategy is proposed
to address the weak robustness of ADD systems. Experi-
mental results demonstrate that our approach significantly
enhances the robustness of ADD systems in real-world
communication scenarios.

II. RELATED WORK

The ADD task has gained increasing importance over time,
leading to the development of various methodologies. These
methods can be broadly categorised into machine learning and
deep learning-based approaches.
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Traditional machine learning-based approaches rely on
handcrafted acoustic features. For example, Mel-frequency
Cepstral Coefficients (MFCC) have been widely used in clas-
sifiers such as support vector machines, AdaBoost, decision
trees, etc., demonstrating their effectiveness in ADD tasks
[8]. Additionally, other acoustic features, including Constant-
Q Cepstral Coefficients (CQCC), Linear-Frequency Cep-
stral Coefficients (LFCC), Mel-spectrograms, and constant-Q-
transform [9]-[11], have also been extensively utilised.

With the development of deep learning, competitions such
as ASVspoof [4] have emerged, leading to a more diverse
range of detection and feature extraction methods. Convolu-
tional Neural Networks (CNN) [12], Long Short-Term Mem-
ory (LSTM) networks [13], and attention mechanisms [14]
have been widely used to enhance detection accuracy and
feature extraction efficiency. To further improve model perfor-
mance, [15] proposed a CNN-LSTM-based model that com-
bines MFCC, Mel spectrogram, CQCC, and CQT features to
tackle the ADD task. Similarly, [16] introduced Res-TSSDNet,
which utilises the fusion of raw waveform and spectrogram
representations to achieve better detection accuracy.

Some studies have explored the use of perceptual features
for ADD. For instance, [17] utilises frequency band informa-
tion and complementary real-imaginary spectrogram features
to address ADD challenges, while [18] applies a self-attention
mechanism to extract phoneme-based representations. Addi-
tionally, physiological characteristics such as breathing pat-
terns [19] and human vocal tract features [20] have been
investigated to provide deeper insights.

With the advancement of deep learning, end-to-end ADD
methods have become popular, enabling automatic feature
extraction without manual design. Some methods utilise pre-
trained self-supervised models to extract features, such as
Wav2Vec [21], [22], WavLM [23], and XLS-R [9]. Addi-
tionally, [24] modified the original RawNet2 architecture to
classify audio authenticity from raw waveform inputs directly.

Despite these advancements, ensuring the robustness of
ADD systems remains a significant challenge. To enhance
model generalisation to unseen synthesis techniques and real-
world recording, [25] proposed an aggregation and separation
domain generalisation network, which integrates adversarial
training and domain adaptation. Similarly, [26] introduced
the GMM-MobileNet model, which employs a multi-path
structure to enhance accuracy in unseen deepfake algorithms.

However, a critical research gap remains: the impact of real-
world communication on ADD has been largely overlooked.
In such communication scenarios, the primary considerations
encompass both channel transmission and audio codec [27].
Within wireless channels, impairments such as bandwidth
mismatch, latency, jitter, and PLR can introduce distorted
transmissions, while audio codecs often induce compression
artifacts. Prior studies indicate that channel-induced data loss
degrades the performance of audio-based feature systems [28],
while codec-induced compression artifacts result in diminished
audio quality as high-frequency information is lost [29], which
reduces the robustness of the ADD system. Additionally,

over mobile or internet networks, the combined effects of
audio codec compression and channel transmission degrada-
tion reduce the speech quality [28]. Such ADD tasks in real-
world communication scenarios have not been systematically
studied, highlighting the importance of our research.

III. BENCHMARK DESIGN AND BASELINE EVALUATION
A. Real-world Communication Simulation

Six speech codecs were selected to simulate real-world
communication scenarios: AMR-WB [30], EVS [31], IVAS
[32], OPUS [33], Speex (WB) [34], and SILK [35]. These
codecs were selected for their diversity and broad applicability,
which span various use cases ranging from cellular network
voice calls to VoIP. This selection ensures that the simulated
experimental environment closely approximates real-world
communication scenarios. Details of the codecs are presented

in TABLE 1.
TABLE 1
DETAILS OF THE SELECTED CODEC

Index Codec Sample Rate(kHz) Bitrate(kbps)
1 AMR-WB 16 6.60-23.85
2 EVS 8,16,32,48 5.90-128
3 IVAS 8,16,32,48 13.20-512
4 OPUS 8-48 6-510
5 Speex(WB) 8,16,32 2-44
6 SILK 8-24 6-40

Five PLRs, 0%, 1%, 5%, 10%, and 20%, were selected
for this study to realistically simulate the impact of net-
work congestion, wireless interference, and other transmission
impairments. These rates represent various communication
environments, ranging from ideal transmission conditions to
severely degraded channels with higher PLRs. This systematic
approach enables a comprehensive analysis of the effects of
varying communication conditions on the ADD system.

B. ADD-C Dataset Building

To systematically evaluate the impact of real-world commu-
nication scenarios on ADD systems, we propose the ADD-C
test dataset, which is based on six publicly available speech
datasets, Fake-or-Real (FoR) [37], Wavefake [38], LJSpeech
[39], MLAAD [40], M-AILABS [41] and ASVspoof2021
Logical Access (ASV) [4]. The details of these datasets,
including the number of real and fake utterances, are listed
in TABLE II.

TABLE II
DETAILS OF THE SELECTED DATASETS
Dataset Real Fake Language  Algorithms

FoR 34605 34695 English 7

Wavefake & LISpeech (W&L) 13100 91700 English 7
MLAAD & M-AILABS (M&M) 69853 5000 English 5
ASV 12483 108978 English 17

Total 130041 240373 - 36

The Wavefake and MLAAD datasets contain fake utterances
generated using LJSpeech and M-AILABS as source data,
respectively, while LISpeech and M-AILABS consist of real
human speech recordings. These four datasets are used in
pairs, denoted as W&L and M&M. In total, the datasets
contain 130,041 real and 240,373 fake utterances, involving
36 types of deepfake algorithms. To ensure consistency, all
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Fig. 1. Results of EER, AUC and F1-score on ADD-C test dataset. The first three subfigures represent the baseline models GMM [4], LCNN [4], and AASIST
[36]. The last three subfigures represent the proposed models. Solid and dashed lines denote training on the Original and Augmented dataset, respectively.

four datasets are converted to a single-channel 16-bit Pulse-
Code Modulation format with a sampling rate of 16kHz.

The ADD-C test dataset consists of six conditions (Cy—C?5).
Cy represents the clean condition and was built with 500 real
and 500 fake utterances selected from four datasets in TABLE
II, respectively, without any codec compression and trans-
mission effects. C1-C'5 represent five distinct communication
conditions defined as follows:

6
Cn =Y _T(Cy,Codec;, PLR,),n=1,...,5, (1)
i=1
where Codec; and PLR,, represent six codecs in TABLE
I and the five PLRs (i.e., 0%, 1%, 5%, 10%, and 20%),
respectively. T'(+) is the operation performed on Cj, simulating
six codecs’ compression under one of the five PLRs. All
selected utterances were non-overlap and removed from the
source dataset. Details are shown in TABLE I1I, the proportion
of real and fake under each condition is equal.

TABLE III
THE PROPOSED ADD-C TEST DATASET
Condition Co &) Co Cs Cy Cs
PLR(%) - 0 1 5 10 20
Total utterances 4000 24000 24000 24000 24000 24000

C. Evaluation and Results of Baseline Models

To systematically assess the impact of real-world commu-
nication scenarios on ADD systems, particularly considering
audio codec compression and channel transmission effects,
three baseline ADD models were selected for evaluation:
GMM [4], LCNN [4], and AASIST [36], utilising CQCC,
LFCC, and raw waveform as acoustic features, respectively.
For a fair comparison, the four datasets in TABLE II were
merged to form a unified Original dataset, with a split ratio
of 80%:20% for training and validation. All baseline models
used the hyperparameters specified in the referenced literature.

The evaluation was conducted on the ADD-C test dataset.
Three evaluation metrics, Equal Error Rate (EER), Area Under
the Curve (AUC), and Fl-score were selected to assess the
models’ robustness and performance. EER refers to the error
rate in binary classification systems when the false positive rate
equals the false negative rate. A lower EER indicates better
overall model performance, while a higher AUC and F1-score
represent better discrimination performance.

The results of baseline models trained on the Original
dataset are shown with solid lines in the first three subfigures
of Fig. 1. A notable performance drop is observed from Cj to

C1-C5. Specifically, when comparing C to C1, the baseline
models experienced an average degradation of 5.30% in EER,
3.16% in AUC and 3.34% in F1-score. While most metrics
exhibit a consistent decline from C to Cs, a slight increase
(<1%) in the F1-score of AASIST was observed. This minor
fluctuation was likely attributed to experimental noise rather
than a fundamental improvement in robustness. Overall, these
results highlight the substantial impact of various commu-
nication conditions on ADD robustness, indicating that the
system’s ability to distinguish between real and fake audio
significantly declines in real-world communication scenarios.

IV. PROPOSED METHOD

In this section, three models and a DA strategy are proposed
to address the performance decline of ADD systems caused
by real-world communication scenarios.

A. Model Architecture

Inspired by the ADD frameworks presented in [4], [26],
three models were designed to handle different input feature
representations. Each model shares a typical architecture com-
prising two main components: feature extraction and classifi-
cation. The proposed architectures are shown in Fig. 2.

All audios were cut to 4s prior to feature extraction, and
zero-padding was applied to audio clips shorter than 4s. Let
x = [z(1),z(2), .- ,2(L)]T € R denote the original speech
signal in time-domain, where x(L) corresponds to the L-th
sample point and L equal to 64,000. Let us define the input
into the proposed model as X € REXNXDXT 'where B is the
batch size, NV is the number of channels, D is the dimension
of the feature, and 7' is the number of time frame. Due to
the difference of input acoustic features, there are three types
of X before sending into the feature extractor, labelled as
lecc c RBXNXDlXTl,chCC c RBXNXDQXTQ and Xwav c
REXNxDsxTs a5 shown in Fig. 2 (a). All audio inputs in this
study are single-channel (mono) signals, resulting in N = 1.
Both LFCC and CQCC are 2D time-frequency representations,
with each feature map having a dimensionality of 60, which
consists of 20-dimensional static feature coefficients, 20-
dimensional first-order delta coefficients, and 20-dimensional
second-order delta coefficients, leading to D; = Dy = 60. In
contrast, the raw waveform is a 1D feature representation, and
the input shape corresponds to the number of sampled points,
resulting in D3 = 1 and 75 = L. The default hop lengths used
during feature calculation for LFCC and CQCC in the baseline
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Fig. 2. Architectures of the proposed models. (a) Different inputs of acoustic features; (b) Feature extractor; (c) Classifier.

models are 512 and 128, respectively, resulting in 77 = 126
and 7> = 501. Finally, the output of the feature extractor
passes through the classifier and outputs the authenticity of
the input signal.

B. Data Augmentation (DA) Strategy

Fig. 3 shows the proposed novel DA strategy for mitigating
performance degradation in ADD systems.
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Fig. 3. Proposed DA strategy

The Original dataset was first partitioned into six equal sub-
sets to ensure balanced representation of deepfake algorithms
and speaker distributions, maintaining overall data diversity.
Each subset was then processed using a speech codec to
simulate codec compression, followed by a PLR simulator
to simulate channel transmission effects. This produced six
augmented datasets, each corresponding to a different PLR.
All datasets generated under the five PLRs were then merged
to form the final Augmented dataset, which is five times that of
the Original dataset, substantially enriching the training corpus
and enhancing model generalisation in real-world communi-
cation scenarios.

V. EXPERIMENTS AND RESULTS
A. Training Setup

The Augmented dataset is constructed by applying the
proposed DA strategy to the Original dataset. It comprises
a total of 1,832,070 utterances, including 640,205 real and
1,191,865 fake samples. For model training, the Augmented
dataset is split into 80% for training and 20% for validation.
Models are trained for five epochs with a batchsize of 256
using the Adam optimiser [42]. Early Stopping [43] with
a patience of three is employed to prevent overfitting. The
models are trained using Cross-Entropy Loss:

1 J
L= =23l logliy) + (1) log(1 - 35)], @)
j=1

where J represents the total number of samples, y; the binary
ground-truth label (0 or 1), and 7; the predicted probability.

B. Results and Discussion

To evaluate the effectiveness of the proposed DA strategy
while ensuring a fair comparison, a two-stage evaluation was
employed. First, extending the results of the baseline models
trained on the Original dataset presented in Section III-C, the
three baseline models were retrained using the Augmented
dataset. Their performance on the ADD-C test dataset is
illustrated by the dashed lines in the first three subfigures of
Fig. 1. Second, the proposed models were trained separately
on the Original and Augmented datasets. The corresponding
results are shown in the solid and dashed lines of the last three
subfigures in Fig. 1, respectively.

Compared to the notable performance decline and limited
robustness shown by the baseline models trained on the
Original dataset, those trained on the Augmented dataset
demonstrate significant performance improvements, exhibiting
strong stability without noticeable fluctuations or degradation
across varying communication conditions.

For the proposed models trained on the Original dataset,
a clear performance drop is observed from Cjy to C1-Ch.
Specifically, comparing Cy to C; yields an average degra-
dation of 2.33% (EER), 0.49% (AUC), and 1.40% (F1-score).
Apart from a negligible fluctuation in the AUC of the proposed
waveform-based model, all metrics show a consistent down-
ward trend from C; to Cs, which aligns with the results in
Section III-C. In contrast, the proposed models trained on the
Augmented dataset exhibit stable performance across all met-
rics. The EER remains unchanged, with a slight improvement
of 0.003% from Cy to C;. AUC and Fl-score also remain
highly stable, with a negligible decrease of 0.1%.

Notably, unlike the models trained on the Original dataset
that suffer from a significant performance degradation, those
trained on the Augmented dataset exhibit consistent stability
across all evaluation metrics from Cy to Cs, without no-
ticeable fluctuations or drops. These results demonstrate that
the proposed DA strategy effectively enhances the dataset by
introducing diverse variations that simulate channel transmis-
sion and codec compression, thereby improving the model’s
generalisation under real-world communication scenarios.

In conclusion, real-world communication scenarios signif-
icantly impact the robustness of ADD systems, while the
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proposed DA strategy can successfully mitigate the degra-
dation caused by codec compression and channel transmis-
sion distortions, enhancing the robustness and ensuring more
reliable ADD system deployment in realistic and practical
communication environments.

VI. CONCLUSION

This work systematically investigates the impact of real-
world communication scenarios on ADD systems. A new
benchmark was established to assess the robustness of ADD
systems under various communication conditions, accompa-
nied by introducing a new test dataset, ADD-C. Furthermore,
a novel DA strategy was proposed to effectively mitigate the
degradation of robustness in various communication condi-
tions. The proposed benchmark and methodology lay a solid
foundation for future research to develop more robust and
security-critical ADD systems.
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