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Abstract—Performance evaluation is essential for developing
anomalous sound detection systems. However, in many real-world
settings, it is challenging to record actual anomalous sounds,
making it difficult to effectively validate the system performance.
To address this issue, this study proposes a novel latent diffusion
model designed to generate realistic anomalous machine sounds
under real-world conditions. The proposed method integrates an
encoder-decoder framework with the Flan-T5 model, encoding
captions derived from audio metadata to facilitate conditional
audio generation using a U-Net architecture. Moreover, operating
within the latent space of EnCodec, the method enables the
generation of high-quality audio signals that are contextually
appropriate. Evaluations of the generated audio using Fréchet
Audio Distance (FAD) and other metrics demonstrate that the
proposed method outperforms existing approaches, producing
audio closely resembling real-world anomalies. Furthermore,
when the anomalous sound detection system was evaluated
using the anomalous data generated by the proposed method,
the AUC score showed only a 4.8% difference compared to
using real anomalous data. This confirms the effectiveness of
performance validation based on the anomalous data generated
by the proposed method. The audio samples can be found at
https://hpworkhub.github.io/MIMII-Gen.github.io/.

Index Terms—Unsupervised anomalous sound detection, audio
generation, latent diffusion model,

I. INTRODUCTION

Anomalous sound detection (ASD) is vital in industrial
applications, as subtle machine sound deviations can signal
critical faults [1]. However, evaluating ASD models is difficult
due to the scarcity of real anomalous recordings, limiting
reliable performance validation. This limitation hinders the
development of robust and accurate detection systems. To
address this, we propose a latent diffusion model to gener-
ate realistic anomalous machine sounds. Existing generative
models [2]–[4] excel in speech and music, however fail to
accurately replicate the fine-grained audio differences and
complexities of machine sounds due to different operational
environments. Our research named as MIMII-Gen seeks to
advance machine sound generation similar to recorded MIMII-
DG data [5], enabling practical applications, particularly in
evaluating anomaly detection systems.

To list our contributions, (i) We validate the robustness
of ASD systems using generated audio anomalous data and
demonstrate its effectiveness though AUC score comparison
with respect to real anomalous data, (ii) To obtain various
operational and environmental conditions, we enhance descrip-
tive quality of weak metadata of sound clips by converting

them into rich, human-like captions for audio generation,
(iii) We carefully design the U-Net of latent diffusion model
for improved guidance through conditional embeddings of
captions from Flan-T5 [6]. As shown in IV-C our method
outperforms current baseline generation models by producing
reliable machine audio samples on Fréchet Audio Distance
(FAD) and other metrics.

II. RELATED WORK

In this section, we review the recent advancements in audio
generation using diffusion-based models and unsupervised
anomaly detection in machine sounds.

A. Text-to-Audio Generation Using Diffusion Models

Text-to-audio (TTA) generation has garnered considerable
attention, with approaches like AudioGen [7] focusing on
learning audio representations by leveraging paired audio-
text data to overcome the challenges of data scarcity and
quality variability. AudioGen employs a Transformer-decoder
to generate discrete tokens in an autoregressive manner. By
implementing data augmentation techniques, such as mixing
audio samples and distilling language descriptions into sim-
plified labels, AudioGen increases the diversity of training
data. However, this comes at the cost of losing intricate spatial
and temporal relationships in the text descriptions, which can
impact the fidelity and contextual richness of the generated
audio. On the other hand, diffusion models have become a
dominant framework for generative tasks, including text-to-
audio conversion. Diffsound [8], uses a non-autoregressive
decoder based on discrete diffusion model to generate audio
using text by refining mel-spectrogram tokens through iterative
steps rather than sequential predictions typical of autoregres-
sive decoders.

Generation approaches like AudioLDM [3], Make-An-
Audio [9], and Tango [4] typically employ pre-trained text
encoders (e.g., CLAP [10], T5) and VAEs to extract text
embeddings and latent audio features. Using a latent diffu-
sion model (LDM) architecture, these systems generate audio
latent features conditioned on text inputs, which are subse-
quently transformed into mel-spectrograms and waveforms
using VAEs and neural vocoders.

Despite these advances, current TTA models often fall
short when applied to machine sound generation, where the
complexity of acoustic environments and subtle variations
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Fig. 1: Block diagram of proposed approach for machine sound generation.

in sound are critical. Current TTA methods primarily focus
on speech and music, with limited exploration of industrial
machine sounds. This gap underscores the need for specialized
generative models tailored to the unique challenges of machine
audio.

B. Unsupervised Anomaly Detection

Anomalous sound detection [11]–[14] aims to identify de-
viations from normal sounds, a task complicated by the rarity
and variability of anomalous events. Traditional ASD ap-
proaches often rely on labeled anomalous data, which is scarce
in real-world applications, limiting their ability to generalize to
new or unseen conditions. Consequently, unsupervised ASD,
which trains only on normal sounds, has emerged as a viable
yet challenging alternative.

The DCASE-2023 Challenge Task-2 introduced a first-shot
(FS) approach to unsupervised ASD, targeting the detection
of anomalies in machine types not seen during training [15].
However, unsupervised ASD methods struggle to adapt to first-
shot scenarios due to a lack of diverse training data encompass-
ing unseen machine types and operational conditions. Limited
anomalous data for evaluation also hinders adaptability and re-
liability in real-world scenarios where anomalies vary widely.

Recent work by Zhang et al. [16] uses generation of
anomalies for training to improve anomaly detection systems,
whereas we focus on generating anomalies to evaluate the
robustness of existing anomaly detection system. Our approach
combines generative modeling with EnCodec and Flan-T5
embeddings to produce machine audio that captures subtle
variations crucial for anomaly detection. It generates diverse
samples for anomaly detection evaluation when real-world
industrial acoustic data is scarce.

III. PROPOSED APPROACH

We propose to thoroughly evaluate existing anomaly de-
tection systems across a wide range of operational and en-
vironmental conditions by using generated realistic and di-
verse anomalous machine sounds difficult to obtain in real-
world settings. This synthetic data enables us to assess the
robustness and effectiveness of these systems, determining
how well they generalize and reliably detect anomalies even in
scenarios not present in their original training data. To generate
these machine sounds under various conditions, we develop a
condition-based latent diffusion model. The crucial parts of the
generation model as well as diffusion process are explained
below.

A. Overview of Diffusion Models

Diffusion models are probabilistic generative models [17]
that learn the data distribution p(x) by progressively denoising
Gaussian noise. They consist of a forward process that adds
noise step-by-step in a fixed Markov chain of length T ,
and a reverse process that iteratively removes noise. The
reverse process can be viewed as a sequence of denoising
autoencoders, where ϵθ(xt, t) predicts the noise added to the
noisy input xt at time step t.

The objective function for diffusion models is:

LDM = Ex,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(xt, t)∥22

]
, (1)

where t is uniformly sampled from {1, . . . , T}. This mirrors
denoising score matching, enabling effective prediction of
clean data from noisy observations.

To reduce computational complexity and focus on semanti-
cally relevant features, diffusion models can operate in latent
space using low-dimensional representations from an encoder.
The training objective in the latent diffusion framework be-
comes:
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LLDM = EE(x),ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t)∥22

]
, (2)

where zt is the noisy latent variable from the encoder E ,
and the reverse process is modeled using a time-conditional
U-Net backbone, as shown in Fig.1.

For conditional generation modeling p(z|y), the condition-
ing variable y is projected to a representation τθ(y) via
an encoder τθ. The loss function for the conditional latent
diffusion model is:

LLDM = EE(x),y,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, τθ(y))∥22

]
, (3)

where both the denoising network ϵθ and the conditioning
encoder τθ can be jointly optimized.

B. Model Architecture

As illustrated in Fig.1, we generate captions from the
metadata of audio files, which describe operational settings,
environmental conditions, anomaly types, and machine mod-
els. These captions are encoded using the Flan-T5 model [6]
to obtain 768-dimensional condition embeddings, serving as
inputs for the diffusion model.

We employ EnCodec, an off-the-shelf VQ-GAN model, to
obtain compressed latent representations of audio signals, cap-
turing essential features efficiently. Unlike traditional methods
that rely on VAEs and vocoders—requiring additional training
on spectrograms [3] and models like HiFi-GAN [18]—we
use EnCodec similar to AudioJourney [19], simplifying the
architecture and reducing model complexity.

In EnCodec, the encoder outputs a continuous latent rep-
resentation, which is converted into a discrete set of code-
book indices through residual vector quantization (RVQ). The
latent dimension becomes equal to the number of selected
codebooks, Nq . Variable bandwidth training in EnCodec ran-
domly selects codebooks in multiples of four, corresponding
to bandwidths of 1.5, 3, 6, 12, or 24 kbps at 24 kHz. After
experimenting with these options, we selected 24 kbps based
on generation quality.

The discrete representation is converted back to a continu-
ous vector by summing the corresponding codebook entries
before the decoder, via the dequantization block (De-Q in
Fig.1). This continuous latent vector is used as input to
the diffusion process during training. During inference, the
sampled latent vector is input directly to the decoder to gen-
erate the audio clip. The diffusion model is trained using the
Denoising Diffusion Probabilistic Model (DDPM) framework
with a wide-channel denoising U-Net, where the condition
embeddings are combined with audio representations.

U-Net Design and Noise Scheduling: We employ a wide-
channel U-Net with 16-channel input to effectively utilize the
EnCodec encoder’s latent space, differing from the typical 1
or 3 channels in other audio generation methods. To address
minimal variance in the 16-dimensional latent encodings, we
reshape the latent vectors from a single-channel 128 × 750
format to a 16-channel 8 × 750 format. This restructuring

allows convolutional blocks to fully encompass the latent
representation within their receptive fields, enhancing audio
generation fidelity. Each channel is separately normalized to
zero mean and unit variance, aiding the U-Net in learning
the noise distribution N(0, I). While inspired by AudioJour-
ney [19], our reshaping dimensions, number of channels,
and U-Net design differ due to specific data characteristics.
These transformations are reversible, enabling decoding back
into waveforms using the EnCodec decoder. Additionally, we
use cross-attention instead of embedding addition in the U-
Net architecture to preserve the original audio embeddings
throughout each layer, enhancing conditional guidance.

The generated samples are used to evaluate generation
quality and as input into an auto-encoder based anomaly
detection system [15].

IV. EXPERIMENTS

A. Dataset

We utilize the MIMII-DG dataset [5], which contains sounds
of various machines recorded under different operating con-
ditions. This dataset is employed in anomaly detection Task
2 of DCASE2023 [15], comprising three parts: development
dataset, additional training dataset, and evaluation dataset.
Metadata includes attributes related to operational and envi-
ronmental conditions and machine model types. For our work,
we used recordings from five machine types (fan, gearbox,
bearing, slide rail, valve) from the development dataset and
split it to train and evaluate our generation model. Each audio
recording is a single-channel file of approximately 10 seconds
duration, sampled at 16 kHz.

B. Experimental setup

1) Audio generation: In order to train the diffusion model,
a total of 35,146 training samples from all machines are used
and 8,787 samples are used for validation of the generation
quality. Table II shows the distribution of samples from each
machine type.

The metadata associated with all the recorded audio clips
are given as input to the T5-large [20] model to obtain
descriptive captions that are saved in order to be used later
for audio generation. Table I shows examples of the metadata
and captions of the dataset. These captions are then encoded
into 768-dimensional embedding vectors using another model
Flan-T5 as shown in Fig. 1 to give as input condition during
training and inference from diffusion model. During training,
the parameters of Encodec and the Flan-T5 model are frozen,
only the denoising U-Net is trained.

2) Anomaly Detection: We trained the anomaly detection
system using 990 normal audio clips from each machine type.
For evaluation, we created two datasets for all five machine
types: one containing the original 50 normal and 50 anomalous
clips, and another comprising 50 original normal clips and
50 generated anomalous clips. The generated anomalous clips
were produced by the diffusion model using captions and
conditions not encountered during its training. The anomaly
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TABLE I: Generated and ground truth audio clips. Listen to them at: https://hpworkhub.github.io/MIMII-Gen.github.io/

Metadata Caption Ground Truth Generated

Bearing, anomaly, axis damage,
velocity of 24 krpm, location ”A”

A bearing operating on veloc-
ity of 24 krpm with anomaly
due to axis damage at location
A

Gearbox, anomaly, damage type 2,
model B, voltage of 2.3 (V),
weight of 0 (g)

A gearbox model B operating
on voltage of 2.3 (V) and
weight of 0 (g) with anomaly
due to damage type 2

Fan, model, anomaly, over voltage A fan model is running on
over voltage with anomaly

Slider, ball-type, anomaly,
damage, velocity 1000.0 (mm/s),
acceleration 0.3

A ball-type slider operating
on velocity of 1000.0 and an
acceleration of 0.3 with an
anomaly due to damage

Valve, anomaly, contamination,
moving pattern 1, surroundings is
open

A valve of moving pattern 1
in open surroundings with
anomaly due to contamination

TABLE II: Counts of audio samples for each machine type in
training and validation datasets

Machine
Type

Training Samples Validation Samples

Bearing Normal: 6381 Normal: 1613
Anomalous: 637 Anomalous: 151

Gearbox Normal: 5863 Normal: 1485
Anomalous: 778 Anomalous: 192

Fan Normal: 5961 Normal: 1458
Anomalous: 850 Anomalous: 202

Slide rail Normal: 5983 Normal: 1536
Anomalous: 1036 Anomalous: 286

Valve Normal: 7134 Normal: 1707
Anomalous: 523 Anomalous: 157

detection system is same as the autoencoder baseline used in
DCASE2023 Task 2 [15].

C. Results and discussion

The generated audio samples should be of higher quality
and diversity in order to validate the anomaly detection
systems. So, we employ four objective metrics to evaluate
our generated audio: Frechet Audio Distance (FAD) [21],
[22], calculated using embeddings extracted by VGGish [23];
Kullback-Leibler divergence (KLpasst) between the outputs of
PaSST [24], an audio classification model; Inception Score
(ISpasst) [25], which is also based on the outputs of PaSST;
and the CLAP score. Lower FAD indicates higher audio
quality for the generated samples. The KL divergence assesses
the semantic similarity between generated audio and reference
ground truth audio. The IS measures the diversity of generated
samples, while the CLAP score evaluates how closely the
generated audio aligns with the provided textual description.
We calculate the CLAP scores for two cases, (i) for original

audio and caption (ii) for generated audio and the caption. The
CLAP scores for both the cases should be almost same if the
generated audio is similar to the original.

Table III presents the performance of the generation models
across the evaluated metrics. The CLAP scores for the original
(i) and generated (ii) cases are separated by a hyphen in the
table. The results indicate that our approach outperforms the
Tango baseline, which relies on AudioLDM with a pretrained
VAE and vocoder. This performance gap is likely due to
the vocoder’s limited generalization to non-speech audio.
Additionally, our approach utilizes a 16-channel input and
a wide-channel U-Net, which effectively captures the latent
representations within its receptive field, enhancing denoising
capabilities and resulting in improved generation quality.

TABLE III: FAD and other scores for conditional audio
generation.

Models FAD ↓ KLpasst ↓ ISpasst ↑ CLAP score ↑
Tango 6.88 1.74 2.57 0.15-0.10

Our approach 5.43 1.22 3.72 0.15-0.14

Spectrogram provides a visual representation highlighting
the unique patterns associated with each machine type’s
sounds. Table I shows that spectrograms of the generated
audio samples for given captions as well as the ground truth
audio clips follow similar patterns. We could also successfully
generate the audio samples for combinations of different
conditions which were not seen during training of the diffusion
model.

The anomaly detection system is then evaluated on the
anomalous data generated. Table IV shows the AUC scores ob-
tained on both the evaluation datasets, i.e., originally recorded
as well as the generated anomalous clips. AUC scores for

574



generated data have an average difference of 4.8% and are
correlated to scores of the original anomalous data for all
machines.

TABLE IV: AUC scores for all machine types

Machine type Original data Generated data
Bearing 0.5468 0.5916
Gearbox 0.6920 0.7607

Fan 0.9496 0.9713
Slide rail 0.5588 0.6132

Valve 0.5271 0.5517

V. CONCLUSION

We presented a method for generating high-quality machine
audio with fine-grained variations using metadata, demon-
strating strong alignment with real recordings. Our approach
effectively generates anomalous data across various condi-
tions, enhancing downstream task performance. Leveraging an
EnCodec-based approach over VAE and vocoder methods, we
achieve superior performance with a simplified pipeline. The
anomaly detection system tested on our generated audio shows
only a 4.8% AUC deviation from its performance on original
data, underscoring our method’s practical value in industrial
scenarios.
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