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Abstract—Basic feature representations like MFCCs and
LFCCs allow resource efficient and explainable feature extraction
for e.g. audio deepfake detection. Despite the frequent utilisation
of these feature representations, a comprehensive examination
of the number of coefficients employed and the impact of
delta and double delta values remains to be undertaken. We
analysed MFCCs and LFCCs combined with four classifiers,
using in-domain and out-of-domain test sets. MFCCs performed
superior on out-of-domain data, LFCC on the in-domain test set.
The combination of lower amounts of coefficients with longer
audio inputs, in conjunction with the utilisation of delta and
double delta features, yielded enhanced generalisable results. For
instance, for ResNet34 with 128 coefficients we calculated an EER
of 65.15% on the out-of-domain test set, with 20 coefficients
we calculated an EER of 29.71%. Furthermore, we identified
specific patterns in the MFCCs when employed with various
classifiers. For all classifiers, lower MFCCs (0, 1) were identified
as contributing to a classification as bona-fide, whereby higher
MFCCs contributed to a classification as spoof for all detectors.

Index Terms—audio deepfakes, detection, LFCC, MFCC, ex-
plainability.

I. INTRODUCTION

Mel-frequency cepstral coefficients (MFCCs) are known
for being a good performing feature representation of audio
features for speech processing tasks. A similar feature repre-
sentation are linear-frequency cepstral coefficients (LFCCs),
the only difference between them being the filter bank,
which divides the signal into several components. LFCC
filter bank coefficients covering all speech frequency ranges
equally and with equal importance (linear frequency filter
bank) and MFCC filter banks using the mel scale. For audio
deepfake detection, recently, often self-supervised learning
(SSL) based feature extraction models are used, achieving
superior performance when viewing the generalizability of the
detectors. But, using SSL-based models for feature extraction,
no explanation for the resulting classification can be given.
In addition, SSL models necessitate substantial resources.
Therefore, in this study, we view MFCCs and LFCCs as
feature representation, using different amounts of coefficients
and combining them with four classifiers (LCNN, ResNet18,
ResNet34 and MesoNet). Besides evaluating the performance
of the detectors on the ASVspoof 2019 LA (ASV19) dataset
(in-domain evaluation) we tested the detectors on the in-the-
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wild (ITW) dataset [1] for its generalizability, i.e. out-of-
domain performance.

Furthermore, as each speech signals are time-variant signals
and in a constant flux, the acoustical signal is more accurately
described as a sequence of transitions between phonemes.
A common method for extracting information about such
transitions is to determine the first difference of signal features,
known as the delta (∆) of a feature, and the second difference,
known as the double delta (∆∆). Consequently, we evaluate
the impact of additionally using the ∆ and ∆∆ of the
coefficients as feature input.

We viewed various papers using LFCCs and MFCCs as
feature representation. This is the first study, evaluating the
performance of MFCCs and LFCCs with various classifiers
using different amounts of coefficients and differently com-
bining them with its ∆ and ∆∆ features. Furthermore, recent
works [1] found that longer audio recordings used as input led
to improved detection results. Therefore, we tested the effect
of the audio length as input, using 3 seconds and 30 seconds
recordings. Using coefficients as input to the classifier also
allowed us to evaluate on which basis the detectors classify the
samples as spoof versus bona-fide. Therefore, in a subsequent
analysis, we performed an explainability analysis, evaluating
which coefficients affect the detectors the most.

II. RELATED WORK

A review of several studies on audio deepfake detection
using MFCCs and LFCCs as feature extraction methods was
conducted. We found that the quantity of coefficients used
differed between the studies. Furthermore, the utilisation of
the ∆ and ∆∆ representation as supplementary data varies,
with some studies employing them and others not. A notable
absence in the majority of studies was an explanation for the
selection of the quantity and type of coefficients employed.
[2]–[4] used 20 MFCCs/ LFCCs. Hereby, [3] and [4] also
used it’s ∆ and ∆∆. [5] used 24 MFCCs with its ∆ and ∆∆.
[6] evaluated different amounts of LFCCs, i.e. 20, 40 and 80
coefficients. They found, that when 20 and 40 LFCCs are used,
the performance is not satisfactory. However, when the LFCC
dimension was increased to 60, the features capture more
high-frequency information that is sufficient for distinguishing
between bona-fide and spoofed speech, resulting in a decreased
EER. Hereby, the tests were conducted on different languages,
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the training set consisting of English datasets, while the test
set includes Chinese and Japanese data. Furthermore, [6] found
that with MFCC almost all speech is identified as bona-fide,
resulting in their finding that the MFCC feature representation
does not generalize and thus is not appropriate in out-of-
domain conditions. [7] used 80 LFCCs and [8] 128 LFCCs
with its ∆ and ∆∆. Following these works, we analysed
the impact of using 128, 50 and 20 LFCCs/MFCCs and the
additional use of ∆ and ∆∆.

III. EXPERIMENTAL METHODOLOGY

We divided the audio deepfake detection process in 1)
feature extraction using MFCC/LFCCs and 2) classification
using LCNN, ResNet18, ResNet34, and MesoNet.

A. Feature Extraction

Of all audio samples, the leading and tailing silence were
removed using librosa. This was done for training and eval-
uation. As sample rate we used 16 kHz. All audio samples
were padded to a length of 3 or 30 seconds, dependent on the
training setting. If the sample wasn’t long enough, the record-
ing was repeated. We set the window length to 400, resulting
in 25ms splits. The hop length was set to 160; resulting in
10ms. The size of FFT (n fft) was set to 512, as in speech
processing recommended value. The number of MFCC/LFCCs
was tested with 128, 50 and 20 coefficients. Depending on the
experiments setting, we added the MFCC/LFCCs ∆ and ∆∆
to the feature vector.

B. Classifier

Four classifiers were analysed and compared: LCNN,
ResNet18, ResNet34, and MesoNet. LCNN (Light CNN) [9]
employs Max-Feature-Map (MFM) activations instead of tra-
ditional ReLU activations, which helps in reducing the model
size while maintaining performance. We used the LCNN
implementation of [10]1, similar to [6], creating LCNN with
a backbone of two BLSTM layers. For ResNet [11] we used
the basic ResNet implementation of PyTorch2, also used by
[12], consisting of a two-dimensional convolutional network
with inplanes of 16, kernel size 7, stride 2 and padding 3,
followed by a batch normalization layer, a ReLU activation
layer, a MaxPool layer and residual layers. We experimented
with ResNet18 and ResNet34, dependent on the model, this
resulted in four layer blocks with 2, 2, 2, 2 (ResNet18) and
3, 4, 6, 3 layers (ResNet34). Each ResNet block consist of
two Conv2D, two BatchNorm and one ReLU layer. The first
layer block has an input of 16 filters and stride of 1 (2. layer
block: 32 filter, 3. layer block: 64 filters, 4 layer blocks:
128 filters; all with stride: 2). After the ResNet blocks we
applied adaptive average pooling and a fully connected layer.
Lastly, we used MesoNet [13] using the MesoInception-4
implementation. Hereby, the first two convolutional layers of
MesoNet are replaced by a variant of an inception module.
The purpose of the module is to accumulate the outputs of

1https://github.com/piotrkawa/deepfake-whisper-features
2https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py

multiple convolutional layers, each characterised by a distinct
kernel shape. This approach serves to augment the function
space within which the model is optimised.

C. Implementation Details

All detectors were trained for 10 epochs using a batch size
of 16. We used an Adam optimizer and BCEWithLogitsLoss,
combining a sigmoid layer and the BCELoss in one single
class. After each epoch, we calculated the development accu-
racy. The model with the best development accuracy was taken
for final testing. The learning rate was set to 10−5. As training
set we used the ASVspoof 2019 LA train set (ASV19) [14].
For evaluating the in-domain performance of our detectors
we used the ASVspoof 2019 LA eval set. For the out-of-
domain evaluation we used the in-the-wild (ITW) dataset [1].
As evaluation metric we used the in audio deepfake detection
commonly used Equal Error Rate (EER). The training was
performed on an NVIDIA GPU A100. For explainability,
calculating the integrated gradients [15], we used the Captum
library3.

IV. PRELIMINARY ANALYSIS: AUDIO LENGTH

[1] found that longer recordings yielded better detection
outcomes. Following this, works like [10] used 30 sec. of
inputs. Other works, like [16] used 9 sec. audio as input using
Voxceleb for pretraining and ASVspoof 2019 as training data.
Therefore, we also evaluated the impact of smaller versus
longer audio inputs. Before evaluating the effects of the input
length on our detectors, we calculated the duration of the audio
files in the datasets. Since, depending on the data available, the
input audio length should be determined. In Table I one can
see the minimum, maximum and mean of the audio samples
in the ASV19 and ITW dataset. We evaluated both, duration
before and after trimming, as trimming silence is an often
used pre-processing technique. As mean over these datasets
we calculated a duration of 3.95 sec. without trimming and
2.88 sec. with trimming. Viewing Table I, the ASV19 dataset
contains samples with a mean duration between 3-4 seconds,
dependent of whether trimming was applied. This is smaller
than the 9 seconds inputs used by [16]. Works like [10] used 30
sec. recordings as input. With datasets as ASV19 LA this will
result in inputs of recordings with approximately 10 repetitions
of the original file. In the following, we will test the effects of
input lengths of 3 seconds (as mean length over our training
and test sets) and 30 seconds.

V. RESULTS & DISCUSSION

A. Coefficient Analysis

We tested LFCC and MFCC with different amounts of
coefficients (128, 50, and 20), with and without its ∆ and
∆∆. Furthermore, we evaluated the use of an input with 3
sec. and 30 sec. of audio. See Table II for the results of
LFCC and MFCC with 128 coefficients. Viewing ResNet18
and ResNet34, independent of using MFCCs or LFCCs, the

3https://captum.ai/
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TABLE I
AUDIO SAMPLE LENGTHS (IN SECONDS).

without trimming with trimming
Dataset min max mean min max mean
ASV19 LA eval 0.47 16.55 3.14 0.47 15.17 2.56
ASV19 LA dev 0.70 16.51 3.49 0.42 11.20 2.50
ASV19 LA train 0.65 13.19 3.43 0.48 12.61 2.47
ITW 0.44 24.99 4.29 0.23 24.73 4.00
mean 0.56 17.81 3.59 0.40 15.93 2.88

TABLE II
128 COEFFICIENTS: EER (%). GREY: WORSE THAN RANDOM GUESSING

(EER >50%). BOLD: BEST RESULTS; UNDERLINE: SECOND BEST.

x: LFCC x: MFCC
Classifier Features length ASV19 ITW ASV19 ITW
LCNN x 3sec 21.10 72.78 25.25 64.33

30sec 20.45 72.16 25.83 62.08
x + ∆ 3sec 23.00 71.08 27.10 55.61

30sec 20.92 72.10 29.04 47.71
x + ∆ + ∆∆ 3sec 23.02 69.95 26.20 54.66

30sec 22.49 72.20 26.04 43.13
ResNet18 x 3sec 25.60 76.99 27.74 65.29

30sec 23.74 79.15 25.68 69.10
x + ∆ 3sec 23.83 80.48 26.02 78.46

30sec 23.89 81.21 24.64 81.24
x + ∆ + ∆∆ 3sec 23.56 73.60 24.94 81.94

30sec 22.83 80.38 24.04 83.29
ResNet34 x 3sec 25.70 78.62 30.02 71.06

30sec 23.00 81.67 25.11 77.96
x + ∆ 3sec 25.14 77.79 28.55 71.44

30sec 22.03 78.44 25.49 72.93
x + ∆ + ∆∆ 3sec 24.24 75.65 27.97 65.15

30sec 22.28 81.86 25.26 74.15
MesoNet x 3sec 28.05 62.34 33.74 20.75

30sec 25.67 64.06 30.98 29.80
x + ∆ 3sec 49.10 27.17 34.55 20.18

30sec 27.37 56.86 37.13 17.40
x + ∆ + ∆∆ 3sec 27.64 61.75 35.11 17.65

30sec 29.15 55.57 34.56 17.96

performance on the out-of-domain dataset ITW was worse
than random guessing (<50%; grey). For LCNN and MesoNet,
the results using MFCC were superior on the ITW dataset,
with an EER of 43.13% being the best using LCNN (MFCC
with 30 sec. of input and its ∆ and ∆∆). The best result on
the ITW was calculated with MesoNet and MFCC with its
∆ and using 30 sec. input length (EER: 17.40%). On the in-
domain test set (ASV19), the best results were obtained using
LCNN and LFCC (30 sec.) without using its ∆ or ∆∆, with
an EER of 20.45%. In general, the outcomes pertaining to the
in-domain dataset were superior when LFCC was employed
in comparison to MFCCs. The inverse is true for the out-
of-domain dataset, here MFCC was the overall better feature
representation.

In the subsequent experiment, the number of coefficients
to be calculated was reduced to 50 and 20, see Table III
and IV. Using 50 coefficients and viewing LFCC and MFCC,
the performance of LCNN, ResNet18, and ResNet34 on the
ITW test set was worse than random guessing (grey). On the
ASV19 test set, the performance increased, with an EER of
20.06% (LCNN with LFCC and its ∆, 30 sec. recording;
before; 20.92%). On the ITW test set, the best results were
calculated, again, using MesoNet, but with a higher EER of
20.31% (MFCC + ∆ + ∆∆; 3 sec.; before best: 17.40%).

TABLE III
50 COEFFICIENTS: EER (%). GREY: WORSE THAN RANDOM GUESSING

(EER >50%). BOLD: BEST RESULTS.

x: LFCC x: MFCC
Classifier Features length ASV19 ITW ASV19 ITW
LCNN x + ∆ 3sec 20.54 73.17 24.99 59.95

30sec 20.06 74.06 25.76 65.06
x + ∆ + ∆∆ 3sec 21.94 73.49 24.76 62.84

30sec 21.48 73.22 25.22 58.45
ResNet18 x + ∆ 3sec 22.23 80.65 28.09 63.79

30sec 22.75 79.88 28.02 68.81
x + ∆ + ∆∆ 3sec 22.68 78.22 27.29 67.16

30sec 21.44 80.53 25.94 73.40
ResNet34 x + ∆ 3sec 24.34 75.09 29.38 64.90

30sec 23.18 81.16 26.72 72.80
x + ∆ + ∆∆ 3sec 23.13 78.03 30.05 60.14

30sec 20.26 81.75 28.09 66.96
MesoNet x 3sec 45.78 22.43 37.28 22.73

30sec 42.31 30.71 30.32 28.88
x + ∆ 3sec 26.06 59.42 33.43 21.69

30sec 27.02 45.20 32.55 20.65
x + ∆ + ∆∆ 3sec 27.70 59.74 33.98 20.31

30sec 27.43 56.75 30.81 28.05

TABLE IV
20 COEFFICIENTS: EER (%). GREY: WORSE THAN RANDOM GUESSING

(EER >50%). BOLD: BEST RESULTS.

x: LFCC x: MFCC
Classifier Features length ASV19 ITW ASV19 ITW
LCNN x + ∆ 3sec 21.82 69.04 29.00 50.67

30sec 21.32 71.94 26.87 48.27
x + ∆ + ∆∆ 3sec 22.56 68.37 28.64 51.84

30sec 22.22 67.03 28.09 52.94
ResNet18 x + ∆ 3sec 25.45 63.08 31.49 43.05

30sec 24.45 59.47 29.23 44.75
x + ∆ + ∆∆ 3sec 25.10 67.03 31.96 39.72

30sec 24.43 70.37 29.52 33.51
ResNet34 x + ∆ 3sec 26.66 60 34.33 39.51

30sec 24.26 62.27 31.92 37.88
x + ∆ + ∆∆ 3sec 25.50 63.56 33.79 36.29

30sec 24.62 70.26 31.75 29.71
MesoNet x + ∆ 3sec 45.79 23.53 42.43 18.95

30sec 42.16 24.15 38.75 16.33
x + ∆ + ∆∆ 3sec 46.57 22.69 49.72 18.09

30sec 41.96 29.05 37.04 15.26

Using only 20 coefficients, the results on the out-of-domain
dataset improved to an EER of 15.26% using MesoNet with
MFCC + ∆ + ∆∆ and 30 sec. recordings as input. Again,
using LFCC the results on the ITW test set are worse than
random guessing (grey). Conversely, utilising 20 coefficients
and MFCC leads to enhanced outcomes for ResNet18 and
ResNet34 on the ITW test set. ResNet34 with MFCC +∆ +
∆∆ reaching an EER of 29.71%. It appears that utilising a
reduced number of coefficients facilitates the classifier’s ability
to generalise. The results obtained on the in-domain ASV19
dataset got worse.

Viewing the impact of 3 sec. versus 30 sec. input recordings,
the highest effect can be seen on the ASV19 test set. With
128 coefficients, in 79% of the settings, 30 sec. recordings
improved the results. For 50 coefficients it was 78% and for 20
coefficients 100% of the settings. On the ITW test set, with the
reduction of the number of coefficients, the higher input length
led to an increased performance. With 128 coefficients 25%
of the evaluation settings were improved by the longer audio
recordings, with 50 coefficients 39% and with 20 coefficients
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50% of the settings. The investigation revealed that the impact
of the input audio length is diminished in out-of-domain data
evaluation as compared with in-domain evaluation. Moreover,
the utilisation of a reduced number of coefficients, a strategy
that yielded enhanced outcomes in out-of-domain data during
our experimental trials, indicates that extended audio record-
ings, even when comprising mere repetitions of the audio
signal, can promote enhanced generalisation.

Evaluating the impact of ∆ and ∆∆, the ∆ seems to be
especially beneficial for the generalizability (ITW), with 62%
of the settings being improved by the additional use of ∆ (128
coefficients; for ASV19: 38%). Hereby, MesoNet stood out
when viewing 128 coefficients, with all four settings (MFCC
and LFCC, 3 sec. and 30 sec.) on ITW being improved
when using ∆ features. Contrarily, when viewing MesoNet
with 50 coefficients, only improvements on the ITW with
MFCC features are visible, for LFCC the use of ∆ detoriated
the results heavily (3 sec.: 22.43% to 59.42% with ∆). On
ASV19 (MFCC and LFCC) the use of ∆ improved the results.
Evaluating the impact of additionally using ∆∆ to the basic
coefficients and its ∆, again, improvements are visible. Over
both test sets, for 128 coefficients 63%, for 50 coefficients
44% and for 20 coefficients 53% of all settings improved.
Hereby, with lower coefficient amounts, the impact on ASV19
decreases and the impact on ITW stays the same, whereby
higher effects on MFCC are visible. Especially for ResNet18,
ResNet34 and MesoNet the additional use of ∆∆ improved
the results on the ITW test set, hence its generalizability. It
seems that the higher focus on information about transitions
in the time domain (∆ and ∆∆) helps in improving the
generalizability of these classifiers. Using 20 MFCCs, its ∆
and ∆∆ and 30 sec. of audio input, led to our best EER on
the ITW test set, being 15.26% (without ∆∆: 18.09%).

We found, that MFCCs are the superior feature extraction
method when working with out-of-domain data. For in-domain
data evaluation, LFCC should be used. This is the opposite
as the finding of [6], who concluded that the MFCCs do
not generalize and thus are not appropriate in out-of-domain
conditions. [6] studied a cross-language setting, which is prob-
ably why their results are different from ours. Furthermore,
we found that a reduced number of coefficients resulted in
superior outcomes for out-of-domain data. Consequently, the
detectors demonstrated enhanced generalisation capabilities.
Furthermore, the utilisation of extended audio recordings in
conjunction with a reduced number of coefficients can enhance
the efficacy of out-of-domain data analysis. In this context, the
reduced number of MFCCs and the incorporation of additional
∆ and ∆∆ features proved to be particularly advantageous for
the generalizability of ResNet18, ResNet34, and MesoNet.

Furthermore, we evaluated the training time by detection
model, as resource constraints are important for real-world
applications. As one can see in Table V, especially the length
of the audio recordings as input (3 sec. versus 30 sec.) led to
higher training times. LCNN needed the longest training time
with 300 sec. per epoch (30 sec. input), followed by MesoNet
with 224 sec. per epoch (30 sec. input).

TABLE V
TRAINING TIME (GIVEN IN SECONDS); 3 / 30 SECONDS INPUT

Detector Input length Train time (per epoch) Eval time
LCNN 3 / 30 59 / 300 57 / 117
ResNet18 3 / 30 58 / 114 56 / 81
ResNet34 3 / 30 59 / 154 56 / 83
MesoNet 3 / 30 58 / 224 57 / 82

TABLE VI
MOST INFLUENTIAL MFCCS (INFLUENCE DECREASES IN DESCENDING

ORDER; EER GIVEN IN %).

ITW # Samples: Spoofs detected as Spoofs
Detector EER coef. Top5 Max Top5 Min
LCNN (∆ + ∆∆) 43.13 128 14, 12, 17, 18, 16 1, 3, 38, 40, 0
ResNet18 65.29 128 17, 15, 7, 5, 21 0, 1, 12, 52, 3
ResNet34 (∆ + ∆∆) 65.15 128 17, 23, 15, 21, 5 1, 12, 3, 52, 50
ResNet34 (∆ + ∆∆) 29.71 20 19, 7, 17, 15, 9 1, 0, 4, 2, 10
MesoNet (∆ + ∆∆) 17.96 128 7, 17, 18, 14, 16 0, 1, 3, 4, 2
MesoNet (∆) 17.40 128 7, 17, 13, 16, 15 0, 1, 3, 2, 4
MesoNet (∆ + ∆∆) 15.26 20 7, 17, 19, 18, 14 0, 1, 2, 3, 4

B. Explainability: Influence of the MFCCs

Due to the superior performance of MFCCs in terms of
generalisability, the following evaluations were conducted
exclusively on MFCCs. First, we viewed the results using 128
coefficients and its ∆ and ∆∆, i.e. the highest amount of
data evaluated. We used Captum to calculate the integrated
gradients of the best detectors on the ITW test set. Then we
extracted the mean over all vectors dependent on the sample
classification (true positive, true negative). For the results on
the spoof samples classified as spoof see Fig. 1. Additionally,
we calculated the mean over all frames of each coefficient.
The MFCCs with the top five maximum and minimum value,
hence most influence on the classification result, are listed in
Table VI.

In Fig. 1 one can see that LCNN and MesoNet focusses
on the beginning and ending of a recording. This supports
our decision of trimming the leading and trailing silence of
the recording, as otherwise the detectors would focus on
silence features. Additionally, different patterns are visible.
Red is showing the positive influence, i.e. influence for the
classification as spoof, blue the opposite. Viewing LCNN, one
coefficient is mostly contributing to one class over the whole
frame length. For ResNet34 and MesoNet other patterns are
visible, with coefficients changing its contribution direction
(red/blue) over time. Viewing Table VI one can see that for
all classifiers, especially the small coefficients (MFCC 0 and
MFCC 1) are contributing information for a bona-fide classifi-
cation. Especially for MesoNet, independent if 128 coefficients
or 20 coefficients are extracted, 0,1,2,3 and 4 are the most
influential coefficients for a bona-fide classification. In future
studies, this behaviour should be subjected to more rigorous
evaluation, for instance, by removing the coefficients from the
feature input. Similarly, for MesoNet, the coefficient 7 and
17 is, in all settings, highly contributing to a classification as
spoof. MFCC 17 is also present in the top 5 for the spoof-
contributing features exhibited by the other classifiers.
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(a) (b) (c)

Fig. 1. Mean MFCCs over spoof samples detected; best settings with 128 coefficients. (a) LCNN (b) ResNet34 (b) MesoNet. Red (positive): coefficient
contributes to a classification as spoof; blue (negative): coefficient contributes to a classification as bona-fide. Dataset: ITW with 3/30 seconds input.

(a) (b)

Fig. 2. Mean MFCCs over spoof samples detected (20 MFCCs). (a) MesoNet;
EER: 15.26% (b) ResNet34; EER: 29.71%

Upon observation of MesoNet and ResNet34 with 20 coef-
ficients (i.e. the model demonstrating optimal out-of-domain
performance, see Fig. 2), it becomes evident that for MesoNet
the initial five coefficients are contributing to a classification
as bona-fide (i.e. blue). Conversely, coefficients 6-20 predomi-
nantly contribute to a classification as spoof across all frames.
For ResNet34 the contributions are subject to variation both
across the various coefficients and, moreover, over the frames,
in contrast to those of MesoNet.

VI. CONCLUSION

We performed an extensive evaluation of LFCCs and
MFCCs for generalizable audio deepfake detection. The in-
vestigation revealed that the optimal system for out-of-domain
data was characterised by the integration of MFCCs and a re-
duced number of coefficients, in conjunction with an extended
input length and the incorporation of ∆ and ∆∆ features. This
system was implemented through the utilisation of MesoNet as
the classifier. The explainability analysis yielded features that
contributed to the classification as bona-fide and coefficients
that contributed to spoof. In future work, these coefficients
will be subjected to a more comprehensive evaluation.
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