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Abstract—Using acoustical features related to timbre makes
anomalous sound detection (ASD) able to make discrimination
logic easily understandable to humans. However, the previous
system using these acoustical features was developed as a su-
pervised system, which requires both normal and anomalous
sounds for supervised training. To this end, unsupervised learning
systems that do not require anomalous sounds for training are
necessary for real-world applications. This paper proposes an
unsupervised ASD system using timbral-related features. Two
novel ideas are used in this system. The first one is taking an
outlier exposure approach, i.e., conducting apparent supervised
learning by generating pseudo-anomaly timbral-related features
from external data. These features are neither too similar nor too
different from normal sounds, making them suitable for training
the discriminator. The second one is extracting features specifi-
cally from intervals where machine sounds occur by using timbral
frame selection (TFS). From the results of ASD evaluations, it was
found that the proposed system performs comparable to previous
supervised learning systems for ASD and outperforms typical
unsupervised ASD systems such as Gaussian mixture models. It
was also found that TFS improves ASD performance for non-
stationary machine sounds.

Index Terms—anomalous sound detection, timbral-related fea-
tures, sound quality metrics, pseudo-anomaly, timbral frame
selection

I. INTRODUCTION

Experienced factory inspectors can determine whether a
machine is anomalous by listening to its sounds. However, due
to the aging of experienced inspectors, there are issues such
as a shortage of successors. Thus, it is necessary to develop
anomalous sound detection (ASD) systems to identify machine
sounds as normal or anomalous using computers [1]. ASD
systems enable inspections that do not rely on experienced
inspectors.

Machine abnormalities rarely occur, and it is challenging
to collect anomalous sound recordings. Most research has
focused on unsupervised ASD, which does not use anoma-
lous sounds for model training [2-5]. In unsupervised ASD,
spectrograms are often used as features. A standard system
uses the autoencoder as the model. This system is an inlier
modeling (IM) approach that uses only normal sounds for
model training. Compared with IM, outlier exposure (OE)
[6] that uses external data as pseudo-anomalous classes has
shown higher performance. Currently, approaches using large-
scale pre-trained models [7] and pseudo-labels [8] have been
proposed, which are also based on OE.

We previously proposed a system for using timbral-related
features, including multiple sound quality metrics (SQMs)
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rather than spectrograms [9]. Using a support vector ma-
chine (SVM) as a discriminator, this system achieves high
performance. It is also used to analyze important timbres for
anomaly detection, making the discrimination logic more in-
terpretable than previous ASD systems. However, this system
uses supervised learning, where both normal and anomalous
sounds are used for training. For real-world applications, an
unsupervised ASD system is required. Because timbral-related
features have lower dimensionality compared to spectrograms,
it is challenging to adapt previous unsupervised ASD systems
that use spectrograms.

We propose an unsupervised ASD system that uses timbral-
related features without requiring anomalous sounds for train-
ing. The system uses an OE approach for generating pseudo-
anomalous timbral-related features using sounds from vari-
ous machines other than the target machine type. Pseudo-
anomalous timbral-related features are generated so that they
are not too similar or different from normal sounds and are
suitable for model training. A timbral frame selection (TFS)
mechanism is also used to extract timbre-related features only
when machine sounds occur, in order to improve performance.

II. RELATED WORK
A. ASD based on auditory perception

Experienced inspectors excel at determining machine
anomalies through auditory perception. Thus, ASD based on
human auditory perception can be effective beyond just deep
learning.

Temporal modulation features using gammatone auditory
filterbanks have been proposed for ASD [10]. This approach
emphasizes capturing temporal characteristics that are difficult
to extract with a log-Mel spectrogram. SQMs have also been
used for ASD. SQMs quantify human auditory sensations.
Specifically, methods using SQMs, such as loudness and fluc-
tuation strength, have been studied for bearing fault detection
[11].

B. ASD focused on timbral-related features

Our previous system is based on auditory perception [9].
This system uses timbral-related features for ASD. The
timbral-related features consist of SQMs and short-term fea-
tures. For SQMs, this system uses five timbral attributes from
the timbral models developed by the University of Surrey
[12], i.e., boominess, brightness, depth, roughness, and sharp-
ness, quantifying subjective impressions humans perceive from
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Fig. 1: Training flow of proposed system.
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Fig. 2: Schematic illustration of pseudo-anomaly generator.

sounds. The short-term features consist of two types: amplified
shimmer (AS) and amplified predominant frequency (APF),
complementing the timbral-related features. AS captures fluc-
tuations in sound amplitude, while APF captures variations in
pitch. A timbral-related feature is a seven-dimensional vector.

This system achieved high performance with an F-measure
of 0.920 on the MIMII dataset [13]. However, since this is a
supervised ASD system, it would be challenging to use in the
real world.

III. PROPOSED SYSTEM

The training flow of the proposed unsupervised ASD system
is shown in Fig. 1. In this section, we explain the pseudo-
anomaly generator and timbral frame selection.

A. Pseudo-anomaly generator

The OE approach that uses external data as an anomalous
class for training demonstrates high performance. However,
there is a tendency for performance to decrease when the
sounds of the anomalous class are too similar or too different
from the normal sounds of the target machine [14]. It is
considered more effective to generate and use data for training
that is neither too similar nor too different from the normal
sounds of the target machine based on the external data rather
than using external data as anomalies.

The pseudo-anomaly generator generates pseudo-anomaly
timbral-related features for training based on sound from
machines other than the target machine. The flow of the
pseudo-anomaly generator is shown in Fig. 2. Various types of
normal machine sounds containing S class sounds are prepared
in advance.

1) From the S classes, select the i classes whose distribu-
tional distance to the target machine is the smallest. The
distance of the distribution is the L2 distance between
the average timbral-related feature of all samples in each
class is denoted as ps (s = 1,...,.5), and that of the
target machine as fisqrges. Define N as the set that
includes only the timbral-related features of the target
machine, A as the set that includes both the timbral-
related features of the 7 selected classes and N
Estimate fa(z) and f4(z), the distributions of A" and A,
using Gaussian mixture models (GMMs). The anomalous
sounds of a target machine can be defined as machine
sounds other than the normal sounds of the target machine
[15]. Therefore, the distribution of anomalous sounds is
approximated by subtracting the distribution of normal
sounds, far(x), from that of various machine sounds,
falz).

The pseudo-anomaly is sampled from the distribution
of anomalous sounds. Since direct estimation of the
distribution obtained by subtracting f 4(x) from far(z) is
difficult, a candidate pseudo-anomaly Z is generated from
fa(z). When log far(Z) < j x log f4(Z) is satisfied, Z
is adopted as a pseudo-anomaly.

2)

3)
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Fig. 3: Time-series data of timbral-related features of valve:
(a) spectrogram, (b) SQMs and APF, (c) AS.

Parameter ¢ in 1) is the number of machine classes included
in A. Increasing parameter ¢ makes the distribution of f4(z)
larger, so the pseudo-anomalies generated in 3) become more
diverse. Parameter j in 3) makes it more difficult to generate a
pseudo-anomaly close to normal sounds. A pseudo-anomaly is
generated from f4(x), but if the log density of the generated
pseudo-anomaly in far(x) is high, it is rejected. Increasing
7 makes it more likely to be rejected, generating a pseudo-
anomaly far from normal sounds. Therefore, it appears that
appropriate settings for parameters ¢ and j are important in
generating pseudo-anomalies that are neither too similar nor
too different from normal sounds.

B. Timbral frame selection

Our previous system uses the average value of timbral-
related features calculated from multiple frames of machine
sounds. However, frames containing only environmental noise
without machine sounds are also included in the averaging for
non-stationary machine sounds, such as slider and valve in
the MIMII dataset. This can significantly impact performance
when the signal-to-noise ratio (SNR) decreases. Wang et al.
reported that by selecting only frames containing machine
sounds in spectrograms to input the discriminator [16], sig-
nificant performance improvement can be achieved in non-
stationary machine sounds. It is considered adequate to ex-
tract timbral-related features from frames containing machine
sounds.

Figure 3 shows examples of the log-Mel spectrogram of a
valve in the MIMII dataset and temporal changes in timbral-
related features. The AS increases with machine sounds, and
some SQMs change with the occurrence of machine sounds.
Therefore, frames where AS becomes high represent the
timbral-related features of the machine sound. SQMs that
show changes correlated with AS are considered particularly
important for discrimination.

The proposed system uses TFS to extract features from
the frames where machine sounds occur for non-stationary

TABLE I: F-measure results on MIMII dataset (SNR 6 dB).
SVM is our previous supervised ASD system, while others are
unsupervised ASD systems.

System | Fan  Pump Slider Valve | Avg.
SVM [9] 0.985 0959 0937 0.798 | 0.920
GMM 0.970 0916 0.882  0.777 | 0.886
TabPEN-ID | 0.906 0.809 0.869 0.761 | 0.836
TabPFN-PA | 0970 0943 0.872 0.804 | 0.897

sounds. The input to TFS is the time-series data of timbral-
related features (SQMs and short-term features) extracted from
a single sample. For the classes input to TFS, the correlation
coefficient r,, (m = 1,..., M) between AS and the other
M types of indicators (TRF,,) of timbral-related features is
calculated for each training sample. The average value 7, of
rm for each indicator is then computed in advance for each
class. For each indicator type of input data, frame selection is
defined by the following equations:

L, = argtop-k AS,, @))
nel,2,....N
+ > TRF,  if || > p,
TRF,, = L )
TRF,, otherwise,

where argtop-k X; is a function that returns the set of top &
tel,2,..,T
indices ¢ for which X; is maximized, AS,, is the AS of the

n-th frame, TRF,, ; is the value of the [-th frame of TRF,,,
TRF,,, is the average of all frames of TRF,,, and TRF;n is the
scalar value of TRF,, after frame averaging. If |F,,| is above
the threshold p, use the average of the frames with the same
index as the k frames with the highest AS values. Otherwise,
use the average over all frames. For AS, if there exists at least
one m such that |7,,,| > p, the average of the highest k frames
of AS is used. Otherwise, all frames of AS are averaged.

Through TFS, frame selection is executed only on indicators
correlating with AS in non-stationary machine sounds. Station-
ary machine sounds contain machine sounds in all frames so
that all frames will be averaged.

IV. EVALUATIONS
A. Database

To compare the proposed system with our previous system,
we used the MIMII dataset [13] with an SNR of 6 dB. The
MIMII dataset includes four types of industrial machines: fan,
pump, slider, and valve. Each machine type contains four
machine IDs.

We also used the DCASE 2020 Task 2 development dataset
as the benchmark for unsupervised ASD. It contains recordings
of six machine types: fan, pump, slider, valve, toy car, and toy
conveyor, each of which includes three or four machine IDs.
As in our previous study, we focused on industrial machines
and excluded toy car and toy conveyor. Thus, we used a total of
16 classes, consisting of four machine types with four machine
IDs each.
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TABLE II: AUC [%] results on DCASE 2020 Task2 development dataset.

Feature | System || Fan Pump  Slider  Valve | Avg
log-Mel spectrogram Autoencoder [17] 65.83 72.89 84.76 66.28 72.44
GMM 83.58 79.63 75.88 76.55 78.91
GMM w/ TFS 83.58 79.63 82.06 83.96 82.31
timbral-related features TabPFN-ID 79.88 72.38 75.25 77.86 76.34
TabPFN-PA 86.24 80.33 78.65 83.65 82.22
TabPFN-PA w/ TFS 86.24 82.67 86.00 86.45 | 85.34
B. Implementation details .81.01 81.78 81.56 82.01 82.29 81.89 |
L . . a0
The dlscrlmlnator in the proposed system is TabPFN [18], _.81.47 82.22 81.37 81.83 81.77 81.93 o
a deep learning model based on transformer [19] for tabular j 7835
. 0 <
data. For experiments, we call the proposed system TabPFN- i 76
PA, which uses pseudo-anomaly (PA). The hyperparameter of ~ 75.69 75.18 77.18 76.33

TabPFN was set to default value. The discriminator was trained
and evaluated for each ID. The evaluation of each machine
type was calculated as the average evaluation of all machine
IDs included in the machine type.

For anomaly generation, all classes except the target ma-
chine class are used, so we set the parameter S = 15. We also
set ¢ = 2 and 7 = 1 in the pseudo-anomaly generator, and
N =77, k=5, and p = 0.9 for TFS.

C. Evaluation score

To evaluate the proposed system by comparing it with
the previous system, we evaluated using the F-measure used
for the previous system. The F-measure is the harmonic
mean of precision and recall. Precision is the proportion of
actual anomalous samples among the samples identified as
anomalous by the system. Recall is the proportion of correctly
identified anomalous samples out of all anomalous samples.

We also evaluated using the area under the receiver oper-
ating characteristic (ROC) curve (AUC) commonly used in
unsupervised ASD.

D. Results

We compared the proposed system with three systems: our
previous supervised system and two proposed unsupervised
systems using timbral-related features. Our previous super-
vised system uses an SVM (hereafter, SVM). Among the
two unsupervised systems, one uses a GMM trained only
on normal sounds (hereafter, GMM), and the other uses
TabPFN, which trains the model to distinguish between the
target machine ID and other machine IDs (hereafter, TabPFN-
ID), following a typical OE approach. TabPFN-ID replaces
the classifier in the MobileNetV2 [20] baseline of DCASE
2021 Task 2 [14] with TabPFN and replaces the features with
timbral-related features.

Table I shows a comparison of the F-measure between SVM
and TabPFN-PA on the MIMII dataset. We did not apply TFS
for this comparison. Although TabPFN-PA is an unsupervised
ASD system, it performed comparable to SVM. TabPFN-PA
also performed better than TabPFN-ID and GMM.

Table II shows a comparison of the AUC between TabPFN-
PA and the other unsupervised ASD systems on the DCASE
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Fig. 4: Heatmap showing AUC [%] for each parameter of
pseudo-anomaly generator.
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Fig. 5: UMAP visualization of distribution and anomaly scores
for valve ID 04: (a) without TFES, (b) with TFS.

2020 Task 2 development dataset. For reference, Table II also
shows the AUC of the autoencoder using log-Mel spectrogram
as features, which is the baseline of DCASE 2020 Task 2
[17]. Similar to the evaluation of F-measure, TabPFN-PA
performed better than the other unsupervised systems. The
application of TFS improved the performance of both GMM
and TabPFN-PA for the slider and valve, whose sounds are
non-stationary. These results indicate that learning pseudo-
anomalies and TFS contribute to performance improvement.
Furthermore, TabPFN-PA with TFS performed the best with
an average AUC of 85.34% across all machine types.

E. Discussion

Figure 4 shows the change in AUC when ¢ and j of the
pseudo-anomaly generator in TabPFN-PA were changed on
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the DCASE 2020 Task 2 development dataset. Increasing @
tended to improve performance slightly, and it is considered
good to use multiple classes for generating a pseudo-anomaly.
As j became larger, performance dropped significantly. This
is thought to be because the pseudo-anomaly becomes too
different from normal sounds as the parameter increases. It
is also thought that appropriate settings of ¢ and j have a
significant effect on performance.

Figure 5 shows the distribution of timbral-related features
by UMAP (Uniform Manifold Approximation and Projection)
[21] and anomaly scores for valve ID 04 in the DCASE 2020
Task 2 development dataset before and after applying TFS. The
application of TFS improved the degree of feature separation
between normal and anomaly, thus performance. For non-
stationary sounds, the features of the mechanical sound section
are considered particularly effective for ASD.

V. CONCLUSION

We proposed an unsupervised ASD system using timbral-
related features. A pseudo-anomaly generator in OE is used to
handle external data in unsupervised learning. TFS is also used
to extract timbral-related features from non-stationary machine
sound. Evaluation of the proposed system showed that it
performed comparable to our previous system. It also achieved
superior performance compared with the unsupervised ASD
systems using a GMM and that using the ID classification-
based OE approach.
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