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Abstract—Generalizable audio deepfake detection is a chal-
lenging task. Simple post-processing attacks like background
noise or impulse response can significantly affect the performance
of the detectors. We analysed the effects of 13 post-processing
attacks on two detectors, one with a SSL (Self-Supervised
Learning)-based front-end (Wav2Vec 2.0) the other using SincNet
for feature extraction. Both detectors showed significant perfor-
mance degradation when applying the post-processing attacks.
For instance, we calculated an EER of 0.73% on the original
data of the in-the-wild dataset using the SSL-based detector. The
performance dropped to 4.37% after applying impulse response.
To find the most effective attacks, we analysed the effects of post-
processing on their signal quality using UTMOS. Additionally, we
explored retraining strategies, improving the overall performance
of our detectors by an EER of 0.22% and 0.33%.

Index Terms—audio deepfakes, detection, post-processing, ef-
fective attacks.

I. INTRODUCTION

Recent advances in artificial intelligence and speech syn-
thesis have facilitated the creation of highly realistic speech
recordings. With advances in voice conversion (VC) and
text-to-speech synthesis (TTS), the demand for robust and
generalizable deepfake detectors has increased. However, most
of the current work uses the raw output as input for detection,
neglecting possible deliberate manipulations, such as post-
processing attacks.The ASVspoof 2021 [1] and ASVspoof5 [2]
datasets introduced more realistic data by including distortions
caused by telephone channel transmission and compression.
However, these datasets fail to consider other post-processing
techniques, such as adding background noise or impulse
response effects. Consequently, these datasets do not fully
explore the range of strategies attackers might use to bypass
detection systems. Mostly, audio deepfake detectors can be
divided in a front-end and a back-end (classifier). We trained
two detectors, one with a SSL (self-supervised learning)-
based front-end and one without SSL, using SincNet [3], and
tested both detectors on various post-processing attacks. To
assess their generalizability, we used the in-the-wild (ITW)
dataset [4], a widely recognized dataset for this task, along
with the ASVspoof 2021 LA and DF splits [1]. We applied 13
post-processing attacks with different parameter settings on the
test sets. Furthermore, we performed a quality evaluation using
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UTMOS, allowing us to identify those audio post-processing
attacks that are most effective, i.e. most harmful. Subsequently,
we propose to improve and harden the detectors by re-
training/fine-tuning them with harmful post-processing attacks,
thereby increasing their robustness against these attacks.

II. EXPERIMENTAL METHODOLOGY

A. Implementation of the Detectors

As SSL-based detector, we used a Wav2Vec2.0 XLSR (2b)
front-end with a GF back-end [5]. For the implementation
we used the code of (LL)GF1. For Wav2Vec 2.0 XLSR we
used the S3PRL library2. For comparison, we also trained a
non-SSL based detector using a SincNet [3] front-end and
AASIST [6] as back-end, based on our previous work [7]
and the work of [8]3. For training, we used a combination of
an internal dataset, ASVspoof 2019 LA [9], WaveFake [10],
its genuine counterpart LJSpeech [11], LibriSeVoc [12] and
FoR [13]. The loss was calculated using cross-entropy loss for
all back-ends. All recordings used for training were trimmed
and padded to approx. 4 sec. of audio clips. The detectors
were trained for 5 epochs (batch size: 16). For data aug-
mentation we used RawBoost [14], the pedalboard library4

(audio compressor, Ladderfilter, Reverb and/or a Limiter) and
the audiomentations library5 adding Gaussian noise and mp3
compression randomly. As evaluation metric, we used the
commonly used equal error rate (EER).

B. Post-Processing Attacks

We applied 13 post-processing attacks on the spoofed
samples of the test sets. The first eight post-processing meth-
ods were created using the audiomentations library. For the
remaining attacks, we used torchaudio using PyTorch. The
applied post-processing methods are:

• Gaussian Noise Add noise to the sample to blur the
speech recording. We set the minimum and maximum
noise application factor to min amplitude=0.001 and
max amplitude=0.015.

1https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts/tree/master/project/
07-asvspoof-ssl

2https://s3prl.github.io/s3prl/
3https://github.com/TakHemlata/SSL Anti-spoofing
4https://spotify.github.io/pedalboard/
5https://iver56.github.io/audiomentations/
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• Background (bkgd) Noise We applied clapping
and church bells using the ESC-50 dataset.
(min snr in db=3.0 dB, max snr in db=30.0 dB).6

• Room Impulse Response (IR) We applied impulse
response characteristics of a “bedroom” and “car” using
the MIT McDermott dataset.7

• RoomSimulator Adds reverb without further libraries
(ShoeBox room simulation).

• BandpassFilter A bandpass filter is a filter that only
allows signals in one frequency band to pass through.
The frequency ranges below and above the passband are
blocked or significantly attenuated. We used its default
setting, with minimum center frequency: 100 Hz, maxi-
mum center frequency: 6000 Hz.

• LowShelfFilter The low shelf filter attenuates all sound
components above the set frequency threshold. We used
its default setting, with minimum center frequency: 50
Hz, maximum center frequency: 4000 Hz.

• Timestretch Time stretching changes the playback speed
of audio material without changing the pitch. We used
2 different parameter values for the change of the total
duration of the signal, which were a min rate of 0.6 and
a min rate of 0.8.

• Resample Resample reduces or increases the sampling
rate (original 16.000 Hz). We resampled to 15.500 Hz,
15.000 Hz, 16.500Hz and 17.000 Hz, i.e. minor change
of -1000 to +1000 Hz.

• Volume Change the volume of the audio recording. We
used the gain type amplitude with gains of 0.5 and 0.1
(positive amplitude ratio).

• Fading Adding a fade in and fade out to a waveform.
We used three different fade shapes: linear, logarithmic,
exponential and a fade in length of 1 second, fade out
length of 2 seconds, which were the default values. For
shorter audio files, the length of the file was used.

• Mp3Compression Compress the audio using an MP3
encoder to lower the audio quality. We used the au-
diomentations library with min bitrate of 8 kBit/s and
max bitrate of 64 kBit/s and torchaudio with a bit rate of
192 kBit/s.

• Encoder vorbis Encode the audio using a vorbis encoder.
We used the AudioEffector implementation of torchaudio
and used the vorbis encoder, an audio format for lossy
audio data reduction, to encode to the ogg format. ¡

• Encoder opus Encode the audio using an opus encoder
with the format ogg. We used the AudioEffector imple-
mentation of torchaudio and used the opus encoder to
encode to the ogg format.

III. QUALITY EVALUATION

First, we tested the quality of the post-processed audio
recordings using the UTMOS metric8. UTMOS expresses
quality in the range of 1-5, in which UTMOS=1 represents

6https://github.com/karolpiczak/ESC-50
7https://mcdermottlab.mit.edu/Reverb/IR Survey.html
8https://huggingface.co/spaces/sarulab-speech/UTMOS-demo

the bad quality, hence worst quality and UTMOS=5 repre-
sents excellent quality. UTMOS can be used for predicting
MOS (Mean Opinion Score for subjective quality evaluation)
automatically and achieved the first place at the VoiceMOS
Challenge 2022 [15]. The results of UTMOS on the spoofed
samples can be found in Table I.

TABLE I
UTMOS OF THE POST-PROCESSED SPOOFS (ITW) - [BOLD: UTMOS
GREATER OR EQUAL TO THE MEAN UTMOS OF ORIGINAL (SPOOFED)

SAMPLES; GRAY: COMPARABLE UTMOS]

Post-processing Method median mean min max
original data 2.62 2.57 1.23 4.28
gaussian noise 1.36 1.59 1.23 3.92
bkgd noise (clapping) 2.62 2.57 1.23 4.28
bkgd noise (church bells) 1.80 1.91 1.22 4.07
IR (bedroom) 1.78 1.86 1.23 3.59
IR (car) 1.63 1.80 1.23 3.58
roomsimulator 2.53 2.47 1.24 4.21
timestretch (0.8) 1.30 1.35 1.22 3.71
timestretch (0.6) 1.29 1.31 1.22 3.43
bandpassfilter 1.42 1.66 1.23 4.03
lowshelffilter 2.57 2.53 1.23 4.26
resample: 15.500 2.62 2.58 1.24 4.21
resample: 15.000 2.63 2.59 1.23 4.30
resample: 16.500 2.60 2.55 1.23 4.24
resample: 17.000 2.59 2.53 1.23 4.18
volume (gain:0.5) 2.61 2.56 1.23 4.29
volume (gain:0.1) 2.41 2.35 1.22 4.22
fading (linear) 2.55 2.50 1.22 4.21
fading (logarithmic) 2.61 2.57 1.23 4.27
fading (exponential) 2.47 2.43 1.22 4.17
Encoder vorbis (ogg) 2.61 2.56 1.23 4.27
Encoder opus (ogg) 2.50 2.43 1.23 4.20
mp3compression 2.44 2.36 1.23 4.18
AudioEffector; mp3 2.61 2.57 1.23 4.29

The lowest UTMOS were observed in samples manipulated
with time stretching (mean: 1.35 and 1.31). In comparison,
the original spoof samples had a mean UTMOS of 2.57.
Notably, only 5 post-processing attacks were able to maintain
similar UTMOS (see bold in Table I). Additionally, certain at-
tacks, such as the lowshelffilter, achieved comparable UTMOS
(greater than 2.30, see gray in Table I), while 7 post-processing
attacks achieved UTMOS scores below 2.

IV. DETECTORS: INITIAL PERFORMANCE

The performance of the detectors on the original dataset
and the post-processed samples of the ITW and ASVspoof
2021 LA and DF test sets is presented in Table II. The results
deteriorated due to the different post-processing methods.
Interestingly, for both, the ASVspoof 2021 LA and DF splits
and for both detectors, the top5 most effective attacks, i.e.
attacks with the most deteriorated EER, were background
noise (clapping and church bells), bandpassfilter, and impulse
response (bedroom and car).

Similarly, for ITW, the worst results were calculated on the
attacks impulse response (bedroom) with an EER of 4.37%,
followed by time stretching (min rate 0.6) with an EER
of 2.17% and an EER of 1.78% for min rate 0.8. For the non-
SSL-based detector, on the original ITW test set we calculated
an EER of 2.52%. The worst results were observed with
background noise (clapping and church bells), yielding EERs
of 16.77% and 7.64%, respectively, followed by the impulse

587



TABLE II
INITIAL PERFORMANCE (EER; %) ON THE POST-PROCESSED ITW AND

ASVSPOOF 2021 LA AND DF DATASETS - [BOLD: BETTER SCORES THAN
ORIGINAL. GREY: TOP5 MOST EFFECTIVE ATTACKS (I.E. ATTACKS WITH
THE MOST DETERIORATED EER). RED: UTMOS ITW MEAN < 2 (SEE

TABLE I)]

ITW ASV2021 LA ASV201 DF
Post-processings SSL NoSSL SSL NoSSL SSL NoSSL
original data 0.73 2.52 1.93 19.82 0.35 11.35
gaussian noise 1.05 4.15 1.92 18.58 0.44 11.70
bkgd (clapping) 1.67 16.77 3.52 29.08 1.15 22.27
bkgd (church bells) 1.28 7.64 3.06 28.77 0.88 20.13
IR (bedroom) 4.37 6.45 6.14 32.91 2.18 21.81
IR (car) 1.14 6.44 2.78 28.94 0.73 19.82
roomsimulator 0.81 2.61 2.47 22.54 0.50 15.17
timestretch (0.8) 1.78 2.64 1.65 17.35 0.46 11.17
timestretch (0.6) 2.17 3.52 1.93 21.41 0.57 14.85
bandpassfilter 1.75 5.26 3.57 25.03 1.38 16.86
lowshelffilter 0.75 2.75 2.23 19.62 0.38 11.56
resample: 15.500 0.75 2.46 2.02 19.65 0.33 11.20
resample: 15.000 0.78 2.22 2.03 19.77 0.34 11.27
resample: 16.500 0.74 2.81 2.23 19.81 0.38 11.23
resample: 17.000 0.75 3.12 2.40 20.01 0.42 11.24
volume (gain:0.5) 0.75 3.02 2.15 21.45 0.35 11.48
volume (gain:0.1) 0.81 6.45 2.17 23.54 0.35 12.13
fading (linear) 0.64 3.39 1.52 20.65 0.24 10.61
fading (logarithmic) 0.67 2.80 1.52 20.52 0.24 11.14
fading (exponential) 0.68 4.14 1.54 21.08 0.24 10.58
Encoder vorbis (ogg) 0.65 2.74 1.52 19.56 0.24 11.54
Encoder opus (ogg) 0.74 2.12 1.86 15.44 0.28 8.40
mp3compression 0.83 3.53 2.23 20.58 0.47 12.93
AudioEffector; mp3 0.74 2.60 2.12 20.09 0.34 11.59

response filter bedroom and car with EERs of 6.45% and
6.44% respectively. In general, we observed similar behaviours
across the datasets.

Interestingly, using fading (in all three settings) resulted
in improved performance on all three test sets when using
the SSL-based detector. For example, on the ITW the EER
improved from 0.73% to 0.64% (linear), 0.67% (logarithmic),
and 0.68% (exponential). A similar behaviour can be seen on
the vorbis encoder, opus encoder and reducing the sample rate
by -500 and -1000 Hz.

To evaluate the effectiveness of the different attacks, we
compared the mean UTMOS of Table I with the EERs of
Table II, focusing on the ITW test set. For the SSL-based
detector we could observe modest negative correlations be-
tween UTMOS and EER with a pearson correlation coefficient
(PCC) of -0.574 and spearman rank correlation coefficient
(SRCC) of -0.615. In terms of attacks, we found that attacks
producing samples with relatively lower UTMOS compared to
the original (< 2, red written in Table II), generally resulted
in EERs higher than 0.9% (e.g. Gaussian noise, background
noise), while attacks with relatively high UTMOS (> 2.3)
achieved an EER lower than 0.83%, with the only exception
being background noise with clapping.

For the non-SSL-based detector, the SRCC between UT-
MOS and EER was -0.470, indicating also a similar modest
correlation, though weaker than the correlation observed with
the SSL-based model (-0.615). However, the PCC was only -
0.082, showing almost no direct correlation between EERs and
UTMOS, but rather a correlation in terms of ranking. In terms
of attacks, we observed slight differences in behaviour where
lower UTMOS scores did not always result in higher EERs

(timestretching, rate 0.8) and where relatively high UTMOS
scores still led to higher EERs (background noise clapping,
resample, volume (0.5; 0.1), fading and mp3compression).

These results highlight significant correlations between the
UTMOS of post-processed samples and the performance of
the detectors, as measured by EER. We found that the quality
of the post-processed samples influences the performance of
the detectors, particularly for the SSL-based model, which we
will explore in more depth in the following section.

V. EFFECTIVENESS OF ATTACKS: IMPACT OF QUALITY

In a subsequent analysis, we evaluated the effectiveness
of the attacks in depth by identifying VERY EFFECTIVE,
EFFECTIVE and LESS EFFECTIVE attacks (see Table III). First,
we identified VERY EFFECTIVE attacks, such that the post-
processed samples had relatively higher UTMOS (> 2.3)
compared to the original UTMOS and their EERs were also
relatively higher (> 2.9%) compared to other attacks (marked
in red, e.g. background noise clapping).

We also identified some EFFECTIVE attacks, whose EERs
were relatively higher (> 2.9%) compared to the original
EER, but which had lower UTMOS scores (<2.3) compared
to the original UTMOS. Different from the VERY EFFECTIVE
attacks, this suggests that the higher EERs could be influenced
by the reduced quality resulting from the post-processing itself
(marked in grey in Table III).

Further, we observed more fine-granular correlations be-
tween the UTMOS of the post-processed samples and the
corresponding detection scores of each post-processing attack
using PCC and SRCC. For most of the attacks that were
identified as VERY EFFECTIVE or EFFECTIVE (marked in grey
and red) there were minimal correlations between the UTMOS
of the post-processed samples and the corresponding detection
scores (|correlation| < 0.2, marked in bold). A similar
behaviour can be seen when examining the correlation between
the UTMOS of the original samples and detection scores. For
LESS EFFECTIVE manipulations, however, the EERs appear to
correlate to the UTMOS scores of the post-processed samples.
Due to space constraints, these scores are omitted in this paper.

Moreover, we tried to find other common features shared
by the successful attacks. For that, we observed the origi-
nal spoofed samples that were very susceptible to the post-
processing attacks. For the SSL-based detector, there were
9 samples and for the non-SSL based detector there were
22 samples that were successfully attacked with all attacks
(total of 23 successful attacks). Upon closer observation of
these samples, we found that most of them had been correctly
identified as spoofs before modification (as original samples),
except for 3 out of 9 samples in the SSL-based detector.

Hereupon, we observed the mean successful post-processing
attack of each original samples that were initially not detected.
We found that if the original samples were not detected, the
post-processing attacks on these samples are also more likely
to succeed. For the SSL-based model, the mean successful
attack of the original samples that were initially not detected
was 18.42. In contrast, if the original samples were detected,
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TABLE III
EFFECTIVENESS OF POST-PROCESSING ATTACKS: CORRELATION UTMOS

POST-PROCESSED SAMPLES VS. DETECTION SCORES - [RED: VERY
EFFECTIVE MANIPULATIONS (HIGH EER + HIGH UTMOS), GREY:

EFFECTIVE MANIPULATIONS (HIGH EER + LOW UTMOS), BOLD: LOW
CORRELATION, HENCE |correlation| < 0.2]

Post-processing non-SSL SSL
Method PCC SRCC PCC SRCC
gaussian noise -0.131 -0.185 -0.038 -0.077
bkgd (clapping) -0.175 -0.175 -0.162 -0.215
bkgd (church bells) -0.125 -0.12 -0.013 -0.049
IR bedroom -0.07 -0.112 0.101 0.059
IR car -0.087 -0.094 -0.082 -0.198
roomsimulator -0.328 -0.332 -0.207 -0.345
timestretch (0.8) -0.008 -0.05 -0.055 -0.155
timestretch (0.6) 0.01 0.001 -0.023 -0.045
bandpassfilter -0.018 -0.005 0.044 0.048
lowshelffilter -0.254 -0.265 -0.192 -0.33
resample: 15.000 -0.246 -0.256 -0.196 -0.316
resample: 15.500 -0.261 -0.279 -0.204 -0.329
resample: 16.500 -0.263 -0.277 -0.215 -0.354
resample: 17.000 -0.254 -0.266 -0.209 -0.363
volume (gain: 0.5) -0.225 -0.248 -0.198 -0.335
volume (gain: 0.1) -0.139 -0.159 -0.142 -0.321
fading (linear) -0.17 -0.187 -0.187 -0.302
fading (logarithmic) -0.232 -0.249 -0.203 -0.334
fading (exponential) -0.122 -0.14 -0.172 -0.287
Encoder vorbis (ogg) -0.261 -0.279 -0.232 -0.373
Encoder opus (ogg) -0.314 -0.332 -0.197 -0.335
mp3compression -0.168 -0.184 -0.139 -0.251
AudioEffector (mp3) -0.26 -0.277 -0.209 -0.341

mean |correlation| 0.179 0.194 0.149 0.251

the mean successful attack is only 0.47. For the non-SSL based
model, the mean successful attack of the original samples
that were initially not detected was 16.48 and for the original
samples detected was only 1.54.

In summary, we observed the following:
• VERY EFFECTIVE and EFFECTIVE manipulations and

the performances of our detectors are less correlated
to/influenced by the quality of the samples (both original
and post-processed samples).

• LESS EFFECTIVE manipulations are negatively correlated
to the quality of the samples (both original and post-
processed samples).

• If original samples were not detected as spoofs in the first
place, it is more likely that they are also not detected after
the attack.

• If all post-processing attacks were successful, it doesn’t
necessarily mean that the original samples were initially
recognised as spoof.

VI. DETECTORS: IMPROVED ROBUSTNESS

After identifying the weaknesses of the detectors when con-
fronted with post-processing attacks, we retrained the models.
We tested fine-tuning and training the models from scratch
using different augmentation settings. See Table IV for the
results. Again, only some of the results are shown due to
page restrictions. The results for fine-tuning were calculated
when trained for 100 iterations because extending the training
led to a decline in performance. For example, when fine-
tuning on impulse response, the EER rose from 0.86% at 100
iterations to 0.97% at 200 iterations and further to 1.12% at
300 iterations.

TABLE IV
INCREASED ROBUSTNESS OF THE SSL/NON-SSL-BASED DETECTOR ON

THE ITW TEST SET, IN EER (%) - [BOLD: ATTACKS USED FOR TRAINING,
GREY: IMPROVED SCORES ALTHOUGH NOT USED FOR TRAINING, IR:

IMPULSE RESPONSE, BN: BACKGROUND NOISE, BF: BANDPASSFILTER]

Post-processing SSL non-SSL
Method before from

scratch
(IR+BN)

ft
(IR+BF)

before from
scratch
(BN)

ft
(BN)

original data 0.73 1.09 0.86 2.52 3.76 7.64
gaussian noise 1.05 0.64 1.20 4.15 3.13 3.71
bkgd (clapping) 1.67 0.63 1.61 16.77 2.56 0.62
bkgd (church bells) 1.28 2.28 1.48 7.64 10.62 9.25
IR bedroom 4.37 1.30 1.66 6.45 5.97 15.30
IR car 1.14 1.01 0.82 6.44 4.43 18.25
roomsimulator 0.81 1.15 0.85 2.61 5.02 8.32
timestretch (0.8) 1.78 0.67 0.42 2.64 5.00 8.30
timestretch (0.6) 2.17 0.78 0.45 3.52 5.83 10.15
bandpassfilter 1.75 2.28 1.16 5.26 2.91 9.46
lowshelffilter 0.75 1.11 0.85 2.75 3.83 7.89
resample: 15.500 0.75 1.10 0.84 2.46 3.42 7.40
resample: 15.000 0.78 1.19 0.90 2.22 4.26 7.76
resample: 16.500 0.74 1.08 0.77 2.81 3.00 8.02
resample: 17.000 0.75 1.12 0.86 3.12 2.88 8.18
volume (gain: 0.5) 0.75 1.07 0.86 3.02 3.67 7.81
volume (gain: 0.1) 0.81 1.13 0.91 6.45 4.38 7.64
fading (linear) 0.64 1.01 0.68 3.39 3.39 8.46
fading (logarithmic) 0.67 0.93 0.67 2.80 3.45 8.07
fading (exponential) 0.68 1.03 0.67 4.14 3.49 8.78
Encoder vorbis (ogg) 0.65 0.75 0.68 2.74 2.71 7.50
Encoder opus (ogg) 0.74 0.91 0.82 2.12 3.52 6.76
mp3compression 0.83 0.81 0.86 3.53 1.46 8.33
AudioEffector; mp3 0.74 0.79 0.85 2.60 1.64 7.65

mean 1.13 1.08 0.91 4.26 3.93 8.39

Since the SSL-based detector performed worst against the
impulse response (bedroom) attack across all three test sets,
we first retrained the detector to this attack. For this, we
trained the model from scratch, adding impulse response (IR)
to the augmentation pipeline (p=0.2; p stands for the prob-
ability of applying this transform) and fine-tuned the model
using impulse response (p=1.0). However, both, training from
scratch and fine-tuning led to a slight decline in performance
on the original dataset (EER training from scratch: 0.93%,
EER fine-tuning: 0.86%; before: 0.73%). On the other hand,
the model’s performance on the impulse response (bedroom)
attack and other post-processing attacks improved (original
EER: 4.37%, EER training from scratch: 1.33%, EER fine-
tuning: 1.21%). As the attack background noise (BN) resulted
in the highest EER after training from scratch, we trained
the model again, adding background noise (clapping) to the
augmentation pipeline.

When fine-tuning the model with impulse response (bed-
room), the results on this attack has improved. Then, the worst
performance was calculated on the attack using bandpassfilter
(EER 2.18%). Therefore, we fine-tuned the model again, on a
combination of impulse response (bedroom) and bandpassfilter
(BF; p=0.5). Eventually, the performance on both attacks
improved (robustness to impulse response remains satisfactory
with an EER of 1.66%). On the original dataset the EER
was 0.86% which is a slight increase of 0.09%. For more
insights, we calculated the mean EER over all attack types
in the different training settings mentioned above and found
that the final SSL-based model fine-tuned on impulse response
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(bedroom) and bandpassfilter had the overall best mean result
of 0.91% which is an improvement by 0.22% (before: 1.13%).

For the non-SSL based detector, the worst results were
initially calculated when applying background noise (clapping)
and impulse response (bedroom). Therefore, we trained the
model from scratch and used fine-tuning on these two attacks.
Overall, the results when trained from scratch were better. The
until now best and improved results on the ITW test set were
achieved when training the model from scratch, adding back-
ground noise (clapping, p=0.2) to the augmentation pipeline.
This improved the results on background noise (clapping) to
an EER of 2.56% (ITW). However, this also increased the EER
on the post-processing attack background noise (church bells)
to an EER of 10.62% (previous EER: 7.64%). Overall, the
best mean EER of 3.93% (before: EER 4.26%) was achieved
when training from scratch with adding background noise to
the augmentation pipeline (p=0.2).

VII. EFFECTS OF RE-TRAINING

In order to evaluate whether there are significant differences
in behaviour for the final re-trained models (being the one
with the best performance), we applied the same analysis on
the correlation between the sound quality (UTMOS) and the
new EERs as we did with the initial models. Different from
the initial detectors, the correlations between the UTMOS
scores of the post-processed samples and the EERs were -
0.031 (before: -0.574) with PCC and 0.008 (before: -0.615)
with SRCC for the SSL-based model. For the non-SSL based
model the correlations were -0.431 (before: -0.082) with PCC
and -0.435 (before: -0.470) with SRCC. Thus, after re-training,
the SSL-based model became less correlated to the UTMOS
scores of the post-processed samples while the non-SSL based
model became more correlated.

The number of relatively effective or very effective attacks
has dropped for both models: from 8 to 5 for the SSL-based
and from 13 to 8 for the non-SSL based detector. Moreover,
the SSL-based model also showed a decline in the mean
and maximum of successful manipulation attacks for each
original sample, regardless of whether the original samples
were initially identified as spoofs or not. Similar improvements
can be observed for the non-SSL based model. However, there
is a decrease in performance on the original samples. For
the SSL-based model, the total number of original samples
that were not detected has increased from 86 to 102. For the
non-SSL based model, the number has increased from 298 to
444. This indicates that the models have generalised across
manipulation attacks, although they were minimally penalised
in terms of overall EER for detecting original spoofed samples.

VIII. CONCLUSION

Our findings indicate that simple post-processing attacks
impact detection performance. Especially adding background
noise and impulse response proved to be effective in degrading
detection performance of both detectors. The non-SSL-based
detector is more susceptible to these attacks than the SSL-
based detector. Both detectors can be improved by including

the most harmful post-processing attacks in the training data.
For the SSL-based detector, the fine-tuning and for the non-
SSL based detector, the training from scratch improved the
results the most. At the same time we found that a careful
selection of dataset and retraining strategies are required while
the best way of finding the best combinations still needs
more research. In future work we plan to test the effects of
combinations of post-processing attacks.
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