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Abstract—Recent research has explored complex loss functions
for deblurring. In this work, we explore the impact of a previously
introduced loss function – Q which explicitly addresses sharpness
and employ it to fine-tune State-of-the-Art (SOTA) deblurring
models. Standard image quality metrics such as PSNR or SSIM
do not distinguish sharpness from ringing. Therefore, we propose
a novel full-reference image quality metric Ω that combines PSNR
with Q. This metric is sensitive to ringing artifacts, but not
to a slight increase in sharpness, thus making it a fair metric
for comparing restorations from deblurring mechanisms. Our
approach shows an increase of 15% in sharpness (Q) and up to
10% in Ω over the use of standard losses.

Index Terms—Deblurring, Sharpness, Sharpness Metric, Ring-
ing, Loss Function

I. INTRODUCTION

Image deblurring is the problem of recovering a sharp image
Î from a blurry image G such that it resembles the original
image I . The process of blurring an image can be defined as
follows:

G = I ∗HK + η (1)

where HK is a blur kernel of size K ×K and η ∈ N (0, σ2)
is the additive Gaussian noise. Depending on whether the
details of the blur kernel are given or not, the process can
be classified as non-blind or blind, respectively. The current
work focuses on blind deblurring as it is more relevant for
real-world restoration tasks.

Classical methods such as the Wiener filter or Richardson-
Lucy deconvolution [1], [2] have long been the standard
for restoring images. However, with the widespread adoption
of Deep Neural Networks (DNNs) for restoration, primarily
deblurring, several works [3], [4] have proposed complex
architectures that produce State-of-the-Art (SOTA) results in
terms of visual quality of the reproduced image.

In practice, the main challenge in deblurring or restoration
is to produce a sharper image without going so far as to
introduce ringing artifacts. Ringing or over sharpening results
when high frequency components are boosted too much. A
good restoration result is therefore often designed by applying
a post-process after the initial deblurring step, removing any
artifacts produced in the process. Several works [5]–[7], have
now shifted to using a hybrid approach combining classical
or iterative deblurring methods with Machine Learning (ML)
based post-processors to produce sharper restorations, yet
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carefully removing any artifacts produced in the process. The
method proposed by Chen et. al. [8] utilizes the Richardson-
Lucy deconvolution algorithm as an initial step to remove blur
from an image, followed by a Deep Neural Network (DNN)
to remove any artifacts introduced in the process.

None of the previous techniques explicitly address sharpness
of a restored image while also assessing the onset of ringing.
What is needed, therefore, is a new loss function that focuses
on enhancing this quality. An example would be to use the
loss proposed by Aurangabadkar et. al. [9] that is based on
a no-reference metric Q proposed by Zhu and Milanfar [10],
first introduced to optimize iterative denoising methods such
as BM3D [11] with the goal of producing sharper restored
images. In this paper, we combine this sharpness specific loss
with the corresponding losses in a number of SOTA models
in order to show the positive effect on image quality. This has
not been done before.

An unfortunate consequence of using a loss function like Q,
is that it increases monotonically with sharpness even when
that sharpness manifests as ringing. An image with excessive
ringing will therefore exhibit high Q yet show a low Structural
Similarity (SSIM) [12] or PSNR with respect to the ground
truth reference. Inspired by this observation, we present a
novel full-reference image quality metric Ω that combines
PSNR with Q, such that it is sensitive to ringing. This new
metric is then used to fairly assess the performance of our
SOTA models trained with a hybrid loss function. Our primary
contributions are as follows.

• An analysis of the incorporation of our sharpness based
loss function Q [9] in training SOTA deblurring models.

• A novel full-reference image quality metric that combines
PSNR and metric Q, hence properly accounting for
ringing.

II. BACKGROUND

It is clear that both the architectures and loss functions have
an impact on the performance of DNN based deblurring mech-
anisms. We therefore consider three examples of architectures
that span SOTA performance – ARKNet [9], XY-Deblur [13]
and EHNet [14].

ARKNet proposed by Aurangabadkar et. al. [9] is a standard
U-Net [15] based architecture comprising of 4 encoder layers,
where each layer consists of 5 convolutional blocks. Each
block, in turn, comprises of a single 3 × 3 convolution
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layer, followed by Batch Normalization [16] and GELU [17]
activation. The model contains a total of 4.8 million trainable
parameters.

XY-Deblur introduced by Ji et. al. [13] is a single encoder
multiple decoder architecture initially intended for restoring
images degraded by motion blur. The model leverages the
fact that employing multiple decoders allows for decomposing
features into directional components, namely horizontal and
vertical. The use of shared kernels amongst the decoders
allows for improved deblurring performance. These caveats
keep the total number of trainable parameters identical to a
standard U-Net, viz. 4.2 million, while producing significantly
sharper restorations.

EHNet proposed by Ho et. al. [14] is a transformer based
architecture that combines Convolutional Neural Networks
(CNNs) and transformers to create a hybrid deblurring mech-
anism. The CNNs allow for efficient local feature extraction,
whereas the transformer decoder with dual-attention enable
the model to capture spatial and channel-wise dependencies.
The model consists of approximately 8.7 million trainable
parameters. Detailed diagrams of all the architectures can be
found in the supplementary materials. *

A. Loss Functions

One way to address sharpness would be to use a loss
function that explicitly increases sharpness in an image. In
our previous work [9], we propose a loss function which is
based on a no-reference metric Q introduced by Zhu and
Milanfar [10].

For measuring Q, an image is first divided into non-
overlapping patches of size k × k. The singular values s1
and s2 (s1 > s2), which determine the patch properties are
calculated based on the eigen-decomposition of the matrix
GTG, where G is the gradient matrix. Anisotropic patches
(patches with texture) are then selected using an adaptive
thresholding mechanism based on eigenvalues of GTG. Q
is then calculated as follows.

Q = s1 ·
s1 − s2
s1 + s2

(2)

Hence an image with sharper edges shows a large difference
between eigenvalues from patches, producing a higher Q than
a blurry image.

Each SOTA model discussed above employs a different loss
function associated with that work. We wish to incorporate our
sharpness based loss Q into these loss functions. Therefore,
denoting the existing loss for a particular SOTA model Lφ(·),
we deploy a composite loss augmenting this existing loss with
our sharpness loss as follows.

L = Lφ(I, Ĩ)− β ·Q(Ĩ) (3)

where I and Ĩ denote the Ground-Truth (GT) and restored
images respectively. Note that Q(·) is a no-reference metric
that depends only on the output deblurred image.

*https://github.com/aurangau/EUSIPCO2025

(a) PSNR=-; Ω=-;
Q=0.08

(b) PSNR=26.54;
Ω=1.59; Q=0.13

(c) PSNR=22.55;
Ω=5.85; Q=0.15

(d) PSNR=20.02;
Ω=11.09; Q=0.17

(e) PSNR=10.48;
Ω=10.98; Q=0.34

(f) PSNR=10.08;
Ω=10.50; Q=0.36

Fig. 1: Sensitivity of Ω to images with different sharpness
amounts (γ). Top Row(L–R): Original Image. Image Sharp-
ened with γ = 0.8 and 1.3. Bottom Row(L–R): Image Sharp-
ened with γ = 2.5, 11.8 and 13.8. An increase in sharpness
leads to an increase in Ω, however with the introduction of
ringing Ω decreases.

Lφ for ARKNet and XY-Deblur was l1, whereas EHNet
employs a combination of l1 and frequency loss Lfreq as
follows.

Lfreq = ||F(Ĩ)−F(I)|| (4)

where F(·) is the Fourier transform.
To compare these systems it would be simple just to

measure the loss function itself, but each method has a
different effective loss function and so we need a fair metric.
As stated previously, Q increases with sharpness and also
increases with ringing. However, PSNR or SSIM will reduce
with ringing (therefore able to highlight that as a detrimental
effect) but also reduces with sharpness. Figure 1 shows this
phenomenon by applying the Matlab function imsharpen
with parameter γ to introduce sharpness into an image. We use
here a 128×128 crop from an image in the Kodak dataset [18].
We sharpen the original image with five different sharpness
amounts γ = 0.8, 1.3, 1.8, 2.5, 11.8, 13.8. As sharpness (γ)
increases, so does Q but it continues to increase with ringing.
PSNR on the other hand reduces with sharpness including
when ringing artifacts appear. This effect is made more clear
in Figure 2.

What is needed therefore, is a measure that combines the
strengths of standard picture quality metrics such as PSNR
with Q, so that sharpness and ringing are treated correctly. We
therefore propose a metric Ω which is a weighted combination
of PSNR and Q. This is discussed next.
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Fig. 2: Behavior of Ω, Q and PSNR with increasing sharpness
amounts (γ). Top: Comparison of Q (blue) and PSNR (black)
w.r.t γ. Bottom: Change in Ω w.r.t γ. As the sharpness
increases, Q increases, whereas PSNR decreases. However,
Ω increases to a certain point and then begins to decrease as
ringing is introduced.

III. PROPERLY ACCOUNTING FOR RINGING

As specified in the previous sections, an image with ringing
will have a high Q, whilst having low SSIM or PSNR. We
wish to devise a metric which increases with sharpness, but
decreases with ringing artifacts in an image. We must note
that PSNR behaves approximately correctly, but lacks the
knowledge about sharpness, thus leading to a low value even
for images that are sharp and have no spurious artifacts. Q,
on the other hand, is a reliable indicator of sharpness when
PSNR of a restored image is high, but becomes unreliable
when PSNR is low. Therefore, we want to combine the two
in a non-linear fashion given as follows.

Ω = (1− σ(α)) · P ′ + σ(α) · Q̃ (5)

The intuition behind such a metric is based on the idea of
giving more weight to PSNR for a patch that has high ringing
and Q when a patch has low ringing. The weighting function
σ(·) is as follows.

σ(α) =
1

1 + eR(α−α0)
(6)

The parameters R and α0 control the amount of acceptable
sharpness. Based on 13,052 images, we set R = 5 and α0

= 1.2. Hence, an increase in sharpness leads to an increase
in Ω and when ringing artifacts are produced, Ω decreases.
Figure 2 shows a plot of the behavior of Ω PSNR and Q with
increasing amounts of γ. An increase in the sharpness amount
(γ) initially leads to an increase in Ω. However, as ringing
artifacts are produced due to over-sharpening, Ω decreases.

We divide the GT (I) and restored images (Ĩ) into N non-
overlapping patches of size m×m. For each patch from both

images, we measure Q = Q(I) and Q̃ = Q(Ĩ) respectively to
determine the sharpness. To determine the amount of ringing,
we measure a deviation ratio α given as follows:

α =
|Q̃−Q|

Q
(7)

A higher α value corresponds to the presence of ringing
in the restored patch. We then measure PSNR between the
GT (p) and reference patch (p̃), clipping it at 50 dB, to avoid
producing a value of ∞ when both patches are identical.

P ′ = min(PSNR(p, p̃), 50) (8)

Ω for the entire image is the average per patch.
Figure 1 shows the behavior of Ω using a patch size

m = 16. As opposed to PSNR or Q, where the values are
monotonically decreasing and increasing w.r.t the sharpness
amounts, Ω increases with increasing sharpness for images
with negligible ringing (Top Row, Center and Left). However,
over-sharpening the image introduces ringing (Bottom Row),
leading to a decrease in Ω values.

IV. EXPERIMENTS

Our primary goal is to evaluate the loss Q comprehensively.
Therefore, we employ three different models and three differ-
ent datasets. We train models with their respective losses Lφ

for a fixed set of epochs until the best possible combination
of weights are found and then fine-tune with our composite
loss L. The datasets used and the implementation specifics are
mentioned next.

A. Datasets

For training and testing the aforementioned methods, we
use three datasets - RealDOF [19], DPDD [20] and ARK [9].
The Real Depth of Field (RealDOF) set is a collection of
50 scenes, where each scene comprises of the in-focus image
along with its out-of-focus counterpart. Each image is of the
size 2320× 1536 pixels.

The Dual Pixel Defocus Dataset (DPDD) consists of 500
out-of-focus images along with their in-focus images. Each
image is of the size 6720× 4480 pixels.

The dataset proposed by Aurangabadkar, Ramsook and
Kokaram (ARK) comprises of three different out-of-focus
images separated by the level of blur – low, medium and
high, captured by changing the focus ring of the camera by
2 units, w.r.t their in-focus Ground Truth (GT) counterparts.
Each collection consists of 305 images of the size 5796×3870
pixels.

B. Implementation Specifics

For training the models, we use 143,104 crops from the
DPDD dataset, 38,200 from the RealDOF dataset and 79,000
crops from the ARK dataset. For the purpose of inference, we
use 4,996 crops from the RealDOF dataset, 7,898 crops from
the DPDD dataset and 188 crops from the ARK dataset, all of
which are of the size 128 × 128. Only the luma (Y) channel
was used for deblurring.
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Fig. 3: Ringing introduced by EHNet on an image from
RealDOF dataset. (L–R) GT image. Blurry image (Ω=1.06).
Image restored with Lφ (Ω=1.75). Image restored with L
(Ω=1.72). Using our composite loss leads to the production of
slightly over-sharpened edges, thus leading to a slight decrease
in Ω value.

The β value in equation 3 was empirically set to 0.1 for
training ARKNet, 0.01 and 0.1 for XY-Deblur and EHNet,
respectively. Each model was trained with Lφ for 100 epochs
and then fine-tuned using L for another 30 epochs.

V. RESULTS

For evaluating the quality of deblurred images, we use
standard metrics such as PSNR, SSIM, alongside those that
focus on sharpness – Q, J [21], Ω, as well as, neural metrics
such as LPIPS [22]. J is a sharpness metric normalized
between [0, 1] that measures the sharpness difference of
restored image Î from the blurry and GT image. A restoration
identical with the GT or blurry images will have a J value of
1 or 0 respectively.

As can be seen from Table I, incorporating Q into the train-
ing leads to an increase of approximately 15% in sharpness
(Q) over using Lφ alone. We perform a paired t-test on the
metric values and find the observed difference between means
of metrics of images restored using L as opposed to Lφ are
significant at the 5% level (p < 0.05), the exception being
SSIM, signifying its inability to properly detect sharpness in
an image.

Our proposed metric Ω shows an increase of approximately
10% for XY-Deblur and 3% for ARKNet when we use L
as opposed to Lφ. averaged over three datasets For EHNet,
however, we observe a slight reduction of 1% when we use
L, as opposed to Lφ, averaged over three datasets. This is
possibly because of ringing. An example of this can be seen in
Figure 3, where the model produces spurious artifacts around
the edges. Therefore, subjective testing must be done to thor-
oughly understand the correlation between Ω and sharpness in
an image.

Figure 4 provides a comparison of images from three
different datasets (rows 1 to 3) mentioned in section IV-A
deblurred using XY-Deblur with and without Q (columns
4 and 3, respectively). Using Q during training produces
noticeably sharper edges.

Figure 5 provides a comparison of the different methods
trained with and without Q. Figures denoted by GT and B are
the original and blurry images, respectively. All models trained
using L produce much sharper restorations. Restorations gen-
erated by the complex transformer model EHNet augmented

Method Loss PSNR ↑ SSIM ↑ Q ↑ J ↑ Ω LPIPS ↓

XY-Deblur [13] 28.091 0.782 1.229 0.642 3.093 0.388
ARKNet [9] 28.050 0.778 1.132 0.598 3.016 0.388
EHNet [14]

Lφ

27.992 0.773 1.179 0.605 3.285 0.400

XY-Deblur 27.930 0.780 1.518 0.699 3.409 0.394
ARKNet 27.860 0.777 1.283 0.647 3.116 0.393
EHNet

L
28.065 0.777 1.211 0.622 3.250 0.394

TABLE I: Comparison of incorporating Q as a loss for 3
deblurring models averaged over 3 different datasets. We see
an increase of about 15% in sharpness (Q) for methods where
L was used (highlighted in red), as compared to those where
Lφ was used. In contrast, PSNR, SSIM and LPIPS remain
roughly the same, implying that Q as a loss has targeted
sharpness effectively.

Fig. 4: Comparison of restorations from XY-Deblur on 3
datasets. (L–R) GT image. Blurry image (Ω=3.07,1.47,1.04).
Image restored with Lφ (Ω=1.34,1.33,2.24). Image restored
with L (Ω=0.79,2.59,2.13). Models fine-tuned using our com-
posite loss L produce sharper edges.

with our loss i.e. using L produce sharper images than other
models.

Figure 6 shows the effect of incorporating sharpness with
respect to SSIM. Each point shows the average performance
over the three datasets used. In each case the use of L causes
an increase in sharpness (i.e. points displaced to the right on
the plot) with negligible effect on SSIM. We must highlight
that the changes in Q are statistically significant, as opposed
to SSIM.

VI. CONCLUSION

We have explored the impact of the loss function Q in
SOTA models to produce sharper restorations. We propose a
novel full-reference metric Ω that is a weighted combination
of PSNR with Q and is sensitive to ringing artifacts. Our ap-
proach shows an increase of approximately 15% in sharpness
(Q) and up to 10% in Ω values of restored images, as com-
pared to using losses that do not explicitly call out sharpness
in images. We acknowledge that there is a scaling issue in
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Fig. 5: Visual comparison of different models without and with
Q on an image from the ARK dataset. XY-Deblur, ARKNet
and EHNet trained using Lφ alone are denoted by X , A and
E respectively. The methods which were fine-tuned with Q
are denoted by XQ, AQ and EQ. All models produce finer
textural information when Q is incorporated into training.

Fig. 6: Trade-off between SSIM and Q. Note that while the
changes in Q are statistically significant, those in SSIM are
not.

Ω. Essentially, Ω mixes decibels (dB) with a dimensionless
measure (Q), thus implying that the range of this metric is
content specific. While not an issue for optimization, it is
an issue for interpretability of the metric. Our future work
involves addressing this issue and using Ω as a loss in such
networks and performing a large scale subjective study to
investigate the correlation between Q, J and Ω with Mean
Opinion Scores.
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