Efficient Frequency-Aware Multiscale Vision
Transformer for Event-to-Video Reconstruction

Ramna Magqgsood, Paulo Nunes, Luis Ducla Soares, and Caroline Conti
Instituto de Telecomunicacdes, Instituto Universitdrio de Lisboa (ISCTE-IUL) Lisbon, Portugal
{ramna.maqsood, paulo.nunes, 1ds, caroline.conti}@Ix.it.pt

Abstract—Event-to-video (E2V) reconstruction is a critical task
in event-based vision, benefiting from the advantages of event
cameras, such as high dynamic range and low latency. However,
existing deep learning reconstruction methods often prioritize
temporal consistency and over-emphasize low-frequency features,
leading to blur artifacts and loss of fine details. To overcome these
limitations, we propose a novel frequency-aware multiscale vision
transformer model for E2V reconstruction (MSViT-E2V). Our
model employs wavelet-based decomposition to extract features
at multiple scales, preserving fine-grained details through multi-
level wavelet-based downsampling blocks, followed by trans-
former blocks for multiscale feature aggregation and long-range
dependency modeling. Extensive experiments on various event
datasets demonstrate that our model not only minimizes artifacts
and preserves fine details but also reduces computational costs
by up to 50% compared to the transformer-based model ET-Net.

Index Terms—Event-based vision, frequency-domain analysis,
video reconstruction, vision transformer.

I. INTRODUCTION

Event-to-video (E2V) reconstruction has emerged as a
highly promising research area, driven by the unique advan-
tages of event cameras over traditional frame-based cameras,
such as high dynamic range and low power consumption. Early
approaches to E2V reconstruction primarily relied on non-
machine learning techniques [1]. However, the introduction
of convolutional neural networks (CNNs) by Rebecq et al
[2], with their E2VID model, marked a significant break-
through, achieving state-of-the-art (SOTA) results and paving
the way for CNN-based models [3]-[6]. Scheerlinck et al
[4] introduced FireNet, which employs a lighter network to
achieve faster E2V reconstruction speed. Stoffregen et al,
[3] proposed a pipeline for synthetic dataset generation and
proposed enhanced versions of E2VID and FireNet, trained
on synthetic data: E2VID+ and FireNet+. Recently, Ercan
et al [5] introduced HyperE2VID, a dynamic architecture
using hypernetworks for adaptive inference. These models
face inherent limitations due to the local receptive fields
of convolutional kernels, which struggle to capture long-
range dependencies. This limitation is particularly critical in
E2V, where understanding spatial dependencies and processing
complex texture patterns is crucial. Furthermore, CNN-based
methods often fail to handle structures with significant internal
variations in texture and shape [7]. These limitations have
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recently been addressed through the use of the multiscale
transformer model ET-Net [7]. This model decomposes event
data into multiple resolutions and employs a self-attention
mechanism to aggregate global features across different scales.
Despite its improved performance, ET-Net still exhibits some
limitations. For instance, similar to CNN-based methods, it
focuses on temporal consistency in continuous event streams
leading to an over-reliance on low-frequency (LF) texture
features [8], resulting in artifacts such as blur, over-smoothing,
and the loss of fine details. Additionally, the ET-Net model
is computationally expensive, which does not favor the low-
latency nature of event cameras.

In event-based vision, preserving high-frequency (HF) fea-
tures is crucial [8], [9]. Therefore, there is a pressing need
for an innovative approach that can effectively preserve fine-
grained details while maintaining computational efficiency.
Frequency-aware methods have shown remarkable potential in
event-based tasks [9]-[11]. Techniques like discrete wavelet
transform (DWT), which excel in multi-resolution and fre-
quency domain analysis, have been integrated into deep learn-
ing frameworks to better preserve fine details from event data
[11]. Event data is inherently sparse and rich in HF informa-
tion which DWT can efficiently decompose into multiscale
subbands (one LF and three HF subbands). For example,
[9] proposed a day-to-night event translation method using
wavelet decomposition, demonstrating its ability to accurately
preserve HF details such as edges. Similarly, a 3D DWT [10]
is integrated into spike neural networks (SNNs) to decompose
event data into LF and HF components at various scales. Fang
et al [11] introduced a spiking wavelet transform (WT) that
integrates DWT into SNNs. Their method effectively extracts
spatial and frequency features from event data, outperforming
traditional SNNs in various tasks. In [12], the author demon-
strates the computational efficiency of linear basis transfor-
mations, such as DWT, on event data, when compared with
deep learning models. While WT-based methods combined
with deep learning have been explored for various event-based
vision tasks, their potential for E2V reconstruction remains
largely unexplored, to the best of our knowledge. Therefore, in
this paper, we propose a novel efficient frequency-aware model
that addresses the limitations of existing methods: multiscale
vision transformer for E2V reconstruction (MSViIiT-E2V). Our
model employs a UNet structure [13] to apply a multiscale
feature aggregation strategy, where input features are first
extracted at multiple scales using multi-level wavelet-based
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Ground Truth

o

Fig. 1. Event-to-video reconstruction: a) In the first row, we have ground
truth image with corresponding event voxel and 2D reconstructed intensity
images, b) Fourier spectrum of intensity images, ¢) All three HF components
obtained via DWT on intensity images, and d) zoom view (scaled for better
visualization). While the event voxel resembles the HF map of the scene,
reconstruction from E2VID and ET-Net remains blurry and lacks fine details.

downsampling blocks (WDBs) to process both LF and HF
information. These multiscale features are then passed through
transformer blocks (TBs) to model long-range dependencies,
enabling robust feature extraction across different scales.
Lastly, to adaptively weight features across spatial locations
and channels, attention-based [14] upsampling blocks (UBs)
are employed to reconstruct grayscale images at the original
resolution. Our contributions can be summarized as:

o A novel frequency-aware multiscale vision transformer
(MSVIT-E2V) model is proposed that leverages wavelet-
based decomposition and reconstruction to preserve fine
and structural details in event data at multiple scales.

o The proposed framework achieves superior reconstruction
quality and significant computational efficiency, com-
pared to the existing SOTA ET-Net method.

o Extensive experiments demonstrate that the proposed
solution is effective in overcoming issues like artifacts
and loss of details in reconstructed videos (Fig 1).

II. PROPOSED APPROACH

This paper considers the problem of reconstructing a se-
quence of intensity images, {f k}, from an event stream.
Starting from the common approach in the literature [15], that
converts the event stream into voxel grids, each voxel grid
is then passed to our proposed model that reconstructs a 2D
grayscale image having dimensions H x W x 1, where H and
W represent the image height and width, respectively.

A. Event Representation

Given an event stream {e;}, where e; = (z;,y;,ti, D;)
represents the i-th event with spatial coordinates (x;,v;),
timestamp ¢; € [0, 7], and polarity p; (+1 for positive and -1
for negative polarity), we group events into intervals defined by
consecutive ground truth (GT) image timestamps. Specifically,
the k-th event group Ey, = {e; | Tp—1 < t; < T} } where T}, is
the ending timestamp of the k-th group and AT = Ty, —T}_1 is
its duration. Following a common practice [2], we divide each
group into five temporal bins (B = 5) as it captures temporal
dynamics and maintain computational efficiency. The event
timestamps in Ej, are normalized to the range [0, B — 1] using:
tr = ti_ATj’i*I (B—1). Each event, e;, contributes its polarity to
the two closest bins via bilinear interpolation, forming a voxel
grid, Vj, € REXWXB for the k-th group using (1), where t,,
represents the temporal bin index.

Vi@, y,tn) = Y pimax(0,1—[tn — ) (1)
B. MSVIiT-E2V ‘

Fig. 2 shows the proposed reconstruction model that inte-
grates WDBs, TBs, and attention-based UBs to jointly produce
multi-resolution features, global contextual information, and
spatial and channel-aware feature representations. The input
event voxel, Vy, is first processed by a 3 x 3 2D convolutional
layer (2DConv), transforming it into a feature representation,
X € REXWXC "where C is input channels, i.e., C = 32.
Wavelet-based Downsampling Blocks (WDBs): Three
WDBs process the input in the frequency domain, aim-
ing to overcome spatial information loss and limited recep-
tive fields in existing CNN-based methods [3]-[6]. Specif-
ically, the WDB decomposes and downsamples the in-
put feature maps, X, using 2D-DWT into four subbands:
{XLLaXLHaXHLyXHH} S R%X%XC, where X is the
LF subband, containing the structural information of the
input, and {Xppg,Xpgr, Xy} are the three HF subbands,
representing fine details in the horizontal, vertical, and diag-
onal directions, respectively. The decomposition is achieved
by applying 1D-DWT along the rows and columns of the
input, using low and high-pass filters. We employ the Haar
wavelet function due to its computational efficiency [16]. To
fully exploit the frequency decomposition capabilities of the
DWT, the subbands are processed independently. X, is then
passed through a 3 x 3 depth-wise convolution (DWConv)
to refine the structural information while preserving spatial
resolution. Meanwhile, the HF subbands are concatenated
along the channel dimension and processed through another
3 x 3 DWConv to capture fine details. Each subsequent WDB
applies the same wavelet decomposition process, but instead
of operating on the original input features, it takes the LF
subband from the preceding WDB, Xz_Ll, as input, where
i € {1,2,3}. This multi-level decomposition further refines
structural details at progressively lower resolutions, ensuring a
more effective hierarchical representation. The wavelet decom-
position increase. Therefore, to maintain memory efficiency,
the processed LF and HF subbands are first concatenated along
the channel dimension into X/, (see Fig. 2a) and then a 3x3
2DConv is used to reduce the channel dimensions and extract
underlying features. To capture temporal data dependencies, a
convolutional long-short-term memory (ConvLSTM) module
[17] is employed, where the 1 x 1 2DConv refines feature
representations before feeding them into the ConvLSTM for
temporal modeling and producing the output, X7 . Within our
WDBs, we perform an intermediate reconstruction that acts as
a skip connection between the WDB and the UBs. Specifically,
the concatenated feature map, X .., undergoes inverse WT
(IWT) to restore spatial resolution while preserving both LF
and HF details. This reconstruction serves as an intermediate
step rather than the final model output as shown in Fig. 2a.
Transformer Blocks (TBs): As shown in Fig. 2b, each TB
processes multi-resolution feature maps of shape (H,W,C)
generated by each WDBs. The TB reshapes the input into a
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Fig. 2. Overall proposed model (Left side). On the right side, we show detailed working of (a) WDBs, (b) TBs, (c) attention layer, and (d) UBs.

sequence of tokens, Xfeshaped € RVXC where N = H x W
and projects them into query (q), key (k), and value (v)
using learnable weight matrices. These projections are passed
to the multi-head self-attention (MHSA) [18] mechanism,
which computes attention scores to capture global depen-
dencies across the spatial dimensions. The output of the
MHSA is combined with the original input via a residual
skip connection, followed by layer normalization (LN) to
stabilize training. The normalized features are then passed
through a feed-forward network (FFN), consisting of two
linear transformations with a Gaussian error linear unit ac-
tivation and a dropout (0.1 in our experiments) in between,
to refine the feature representations. Finally, another residual
skip connection and LN are applied to produce the output
of the TB. After processing the input at different scales, the
outputs of all three TBs are resized to a common resolution
of 16 x 16 via bilinear interpolation. The resized feature maps
are concatenated along the channel dimension.

Attention Layer: To perform local refinement, by re-
weighting the concatenated multi-resolution features across
both spatial and channel dimensions, we employ an attention
layer, inspired by [14]. This enables our model to focus on
the most informative regions by adjusting the features in
both channel and spatial domains. In the channel domain,
the concatenated output of the three TBs is first subjected to
average pooling to squeeze the features, followed by two 1 x 1
2DConv layers and a sigmoid activation to generate a channel
attention map. Simultaneously the input is processed by a 1x 1
2DConv to produce a spatial attention map. Both maps are
multiplied with their respective input features to refine the
feature representations (see Fig. 2c¢). Finally, another 3 x 3
2DConv layer is applied to reduce the channel dimensions by
half, ensuring efficient feature extraction.

Upsampling Blocks (UBs): Unlike in [2]-[7], we adopt
attention-based UBs to improve image reconstruction (see Fig.
2d). Each UB begins with bilinear interpolation, increasing the
spatial resolution by a factor of 2, followed by a 3 x 3 2DConv
to reduce channel dimensions while preserving spatial details.
To leverage multi-resolution features, the upsampled output is
concatenated with the IWT of the corresponding scale, where
the IWT acts as a skip connection between the WDBs and the
UBs. This ensures the preservation of both LF structures and
HF details. However, the concatenated features may contain

redundant or noisy information, which can cause ghosting
to appear in the reconstructed images. To address this, we
introduce an attention layer (see details in Fig. 2¢) in UBs to
adjust the features in both spatial and channel domains. This
refinement allows the network to focus on significant textures
and structural details while suppressing noise.

Prediction Layer: This layer consists of a standard 1 x 1
2DConv layer, followed by batch normalization (BN) and a
sigmoid activation function. This layer generates the final 2D
grayscale intensity image I, € RE*Wx1,

Loss Functions: For training, we used learned image patch
similarity (LPIPS) and temporal consistency (TC) loss func-
tions, as in [2]. LPIPS is a perceptual loss function that
measures the similarity between the GT and the reconstructed
image, whereas TC measures transition smoothness between
consecutive video frames, penalizing discrepancies in motion
or textures. The final loss, £, is a weighted sum of both loss
functions over L consecutive images, computed using (2):

L

> e )
k=Lo
where £F and L] are LPIPS and TC loss values at time ,
Arc is the TC loss weight (set to 5 empirically to balance
the reconstruction loss, as in [2]), and we train the recurrent
network with a sequence length L = 40 and Ly = 2.

ITII. EXPERIMENTAL SETUP AND RESULTS

This section outlines the training and testing datasets, re-
sults, and network analysis of the proposed model.
Training Dataset: We follow a common approach to generate
a synthetic training dataset [3], using the “Multiple-Object-
2D” rendering engine of ESIM [19]. This engine simulates
multiple foreground objects moving across a background im-
age, employing various 2D motion properties. Background
images were selected from the MSCOCO dataset [20], while
foreground objects were sourced from [3]. The dataset consists
of 280 sequences, each 10 seconds in length. The contrast
threshold values for event generation ranged from 0.1 to 1.5.
Each sequence in our training dataset comprises an event
stream together with the corresponding GT images, produced
at a rate of 51Hz, both captured at the resolution of 256 x 256
pixels. Note that our model can adapt to varying resolutions

L
L= L{+ o
k=1
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TABLE I
QUANTITATIVE RESULTS ON ECD, HQF, AND ECD_FAST DATASETS. BEST IS IN BOLD, SECOND BEST IS UNDERLINED.

Methods ECD HQF ECD_fast
MSE] SSIM 1 LPIPS | | MSE | SSIM 1 LPIPS | | MSE | SSIM + LPIPS|

FireNet 0.142 0478 0.336 0.094  0.423 0.441 0.131  0.444  0.367
FireNet+ 0.116  0.491 0.416 0.080 0471 0.314 0.049 0449 0329
SSL-E2VID 0.096  0.385 0.442 0.082 0421 0.467 0.109  0.339 0415
SPADE-E2VID 0.101  0.442 0.397 0.077  0.400 0.502 0.049 0449  0.329
E2VID 0.102 0476 0.416 0.098  0.468 0.371 0.203  0.374 0413
HyperE2VID 0.062  0.492 0.370 0.058  0.460 0.370 0.047  0.495 0.307
E2VID+ 0.071  0.501 0.286 0.036  0.533 0.252 0.069  0.501 0.388
ET-Net 0.065 0.523 0.263 0.057 0.483 0.293 0.057 0.532  0.354
MSVIiT-E2V (Ours) | 0.048  0.561 0.224 0.059  0.555 0.241 0.046  0.582  0.302

Event Voxel SPADEE2VID SSL-E2VID E2VID+

FireNet+

HyperE2VID

1N 3 =
Fig. 3. Visual results on HQF (rows 1 and 2), ECD (rows 3 and 4), and ECD_fast (last row). We provided a magnified view of each reconstructed scene
where visual differences are more prominent. Overall, our reconstructed scenes are more close to GT images in terms of contrast and fine details.

due to the use of fully convolutional operations, which process
input in a resolution-agnostic manner.

Testing Datasets: To evaluate the performance of the proposed
model, we utilized the two following benchmark datasets:

e The event camera dataset (ECD) [21] recorded with a
sensor resolution of 240 x 180. This dataset features
sequences from seven indoor environments. Within this
dataset, we also evaluate our model on the ECD_fast
subset introduced by [5], which consists exclusively of
the fast camera motion sequences from the ECD.

o The high quality frame (HQF) dataset [3], recorded with
the same resolution as ECD. This dataset comprises 14
sequences with a wider range of motion and scene types.

Evaluation Metrics: To evaluate the proposed model the
following commonly used full reference metrics were used:
mean square error (MSE) [{], structural similarity index matrix
(SSIM) [1], and LPIPS [}].

Implementation Details: The proposed model is implemented
in PyTorch, trained for 300 epochs with a batch size of 4 on an
RTX 3080 GPU. We use the Adam optimizer with an initial
learning rate of 0.001, decaying by 10% every 50 epochs.
Data augmentation includes random crop (128 x 128) and
flip (probability 0.5), along with noise, pause, and hot-pixel
augmentation as also done in [3].

Comparison with SOTA Methods: We compare our proposed
method with eight SOTA methods for which publicly available
code exists: FireNet [4], FireNet+ [3], E2VID [2], E2VID+

[3], SPADE-E2VID [6], SSL-E2VID [22], ET-Net [7], and
HyperE2VID [5]. For fair evaluation, we re-trained all models
on our synthetic dataset using the same settings as MSViT-
E2V, except for E2VID and FireNet, which use pre-trained
weights due to their original training on a different dataset.
As the GT images of ECD are darker, we follow a common
approach [2] of normalizing the images into the range of
[0, 1] to enable comparison with reconstructed images, without
applying post-processing to the reconstructed images.

Table I shows the quantitative results achieved, in terms of
average metrics, for each testing dataset. As can be seen in
this table, the proposed approach achieved SOTA results for
almost all metrics and datasets. As illustrated in Fig. 3, for the
HQF dataset, our model preserves fine structural details and
perceptually realistic results more effectively, which is also
reflected in the SSIM and LPIPS metrics. Our SSIM scores
are 7.27%, 4.13%, and 9.40% higher on the ECD, HQF, and
ECD_Fast datasets, over the second-best method, demonstrat-
ing superior structural similarity and detail preservation. Fur-
thermore, in challenging scenarios such as fast camera motion
(ECD_fast), our model achieved significant gains across all
metrics. Fig. 3 shows GT images in the rightmost column for
comparison, highlighting the structural details preserved in the
reconstructed images by each method. As evidenced in rows 1
and 2, our model preserves texture details more clearly than the
other methods. Moreover, our method exhibits less artifacts in
the reconstructed images compared with SOTA methods often
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TABLE 11
ABLATION RESULTS ON ECD AND HQF DATASETS.

Methods Xio ECD

LPIPS] | SSIMT

Xz XL, Xun | SpatalBranch | IWT

H
LPIPS] | SSIMT

0.328 0.531
0.262 0.542
0.231 0.558
0.304 0.452
0.224 0.561

0.341
0.291
0.262

0.495
0.561
0.566

only X171
only X, Xrm, XuL
All'Freq. subbands

wlo Freq.

Ours

0.325
0.241

0.499
0.555

A NN
X SN x|
NN X X x|
SN\ X X

containing blur and ghosting artifacts (see rows 3, 4, and 5).
For more visual results, please refer to our GitHub repository.
Network Analysis: To analyze the impact of frequency com-
ponents, we evaluated our model using various frequency
selection strategies. All the models are trained under the
same settings and training dataset as our MSViT-E2V. Table
II reveals that using only X subband provides reasonably
adequate SSIM but results in a high LPIPS, indicating blurry
reconstructions due to missing HF details for both datasets.
Only X1, Xrg and X g model enhances perceptual sharp-
ness but reduces SSIM, showing that edge details alone are in-
sufficient for structural consistency. Incorporating all subbands
significantly improves both perceptual quality and structural
details, highlighting the importance of Xpypy components.
This aligns with the findings in [9] that Xz is critical
for transferring event-style characteristics, such as natural
noise, making it essential for realistic E2V reconstructions.
Notably, using a spatial branch (stride-based downsampling
where s = 2) without frequency components degrades both
metrics, confirming that frequency decomposition aids effec-
tive feature representation. Note that in this experiment we
replace our WDBs with the recurrent convolutional blocks
of ET-Net [7]. Finally, integrating IWT further refines results
by incorporating multi-resolution features as skip connections,
demonstrating its role in balancing sharpness and stability.
Computational Costs: Table III presents the computational
cost of the proposed method at a resolution of 240 x 180, with
inference times measured in milliseconds on an RTX 3080
GPU. Notice that our transformer-based model is almost 50%
smaller than ET-Net, demonstrating that our model provides a
good trade-off between accuracy and efficiency.

IV. CONCLUSION

In this paper, we proposed MSVIT-E2V, a novel model for
E2V reconstruction. It integrates wavelet-based decomposition
blocks to extract multi-resolution features, transformer blocks
to model global contexts, and attention-based upsampling
blocks to minimize artifacts by focusing on important regions.
Experiments on various event datasets show that MSViT-E2V
reduces artifacts and restores fine details more efficiently than
existing methods. Moreover, our model is almost 50% smaller
than SOTA ET-Net, making it more computationally efficient.
In the future, we plan to explore pure frequency-based trans-
formers to further enhance performance and efficiency.
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