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Abstract—Plug-and-play (PnP) methods have become a popu-
lar approach for image reconstruction. Instead of explicitly mod-
eling statistical priors, PnP leverages off-the-shelf image denoisers
to iteratively refine image estimates. In this paper, we present a
relaxed version of the Plug-and-Play (PnP) method for learning-
based image deblurring, built upon the alternating direction
method of multipliers (ADMM), which we call R-PnP-ADMM.
In this approach, we introduce a relaxation parameter into
the ADMM data-fidelity update step. Additionally, a lightweight
HyperNet module is employed to optimize the hyperparameters
of R-PnP-ADMM, significantly reducing the number of iterations.
We validate the effectiveness of our algorithm through extensive
experiments on image deblurring tasks. The results demonstrate
that R-PnP-ADMM achieves stable convergence across a wide
range of blur kernels and noise levels, with state-of-the-art (non-
blind) deblurring performance.

Index Terms—Plug-and-play (PnP), alternating direction
method of multipliers (ADMM), non-blind image deblurring.

I. INTRODUCTION

In image deblurring, the goal is to recover an original image
x from its degraded (blurred and noisy) observation y

y = Hx+ n. (1)

Here H is a blur operator, Hx = K ∗ x, where ∗ is
the convolution operation, and n is an additive noise. The
image reconstruction can be reformulated as the optimization
problem:

x̂ = argmax
x∈Rn

{
1

2
∥Hx− y∥2+γg(x)

}
, (2)

where the first term - a data fidelity term measures the
discrepancy between the observed y and true x images, g(x) is
the prior term representing regularization or prior knowledge
about the clean image, and γ is a positive trade-off parameter.

There are variety of methods to solve (2), including gradient
descent, conjugate gradients, proximal gradients, the Alter-
nating Direction Method of Multipliers (ADMM), and Half
Quadratic Splitting (HQS). These methods employ different
regularization schemes and image priors to model the marginal
distributions of g(x), such as total variation (TV) regulariza-
tion [9], sparse image priors [3], [7], natural image priors [6],
[12], hyper-Laplacian priors [5], and Gaussian mixture model
(GMM) priors [20]. However, these approaches often incur
high computational costs and significant processing time to
achieve high-quality results.

Plug-and-play image deblurring methods combine off-the-
shelf denoisers with iterative optimization frameworks. These

denoisers serve as priors, encoding natural image statistics like
spatial coherence, sharpness, and texture [2], [14]. In [17],
Zhang et al. proposed a PnP-HQS method involving deep
convolutional neural network (CNN) denoisers. DPIR [16]
applies a very deep CNN based denoiser (DRUNet) into the
PnP HQS scheme achieving state-of-the-art performance on
image deblurring.
To enhance the convergence and robustness of ADMM, re-
laxed ADMM methods are used [13] to balance the updates
between the main and auxiliary (primal and dual) variables
by incorporating a relaxation parameter. GS-PnP [4] method
introduced a relaxation in the regularizer term, relaxing the
output of the denoiser.
In this paper, we propose a novel relaxation method of PnP-
ADMM algorithm for iterative image deblurring, where the
relaxation is applied to the data-fidelity step.
Contributions of this paper are the following:
1) A relaxed PnP-ADMM image deblurring algorithm (R-PnP-
ADMM) is proposed.
2) The convergence of R-PnP-ADMM based on assumptions
on the criterion function f(x) and PnP filter is proven.
3) A hyperparameter optimization HyperNet module H is
integrated into the R-PnP-ADMM to allow efficient realization
with a small number of iterations.

II. METHOD

A. PnP-ADMM framework

The augmented Lagrangian for the problem (2) is:

L(x, z, u) = f(x) + λg(z) + ⟨u, x− z⟩+ 1

2
∥x− z∥22 (3)

Here f(x) = 1
2∥Hx − y∥22, z ∈ Rn is an auxiliary variable

to split the optimization into simpler subproblems, u ∈ Rn is
the Lagrange multiplier used to enforce consistency between
x and z, The ADMM algorithm involves alternating updates
for x, z, and u.

The ADMM applies the proximal operator defined as:

Proxτh(w) := argmin
x∈Rn

{
1

2
∥x− w∥22+τh(x)

}
(4)

to arrive at the three-step updates of the algorithm:

xk = Proxαf (z
k−1 − uk−1) (5)

zk = Proxγg(x
k + uk−1) (6)

uk = uk−1 + xk − zk. (7)
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In the plug-and-play framework, the z-update step in (6) is
replaced by a denoising step using a denoising algorithm Dσ:

zk = Dσ(x
k + uk−1), (8)

where σ is the denoising parameter.

B. Plug-and-Play ADMM image deblurring with relaxation

The relaxed PnP ADMM is defined by modifying the x-
update step (5) of PnP ADMM

xk = βProxγf (z
k−1 − uk−1) + (1− β)(zk−1 − uk−1) (9)

where β ∈ (0, 2] is a relaxation parameter. This makes the
PnP-ADMM the special case of R-PnP-ADMM for β = 1.

Implementing deblurring in the Fourier domain, (5) for x-
update step can be written as

(10)xk = βF−1(
F(K)F(y) + µF(zk−1 − uk−1)

F(K)F(K) + µ
)

+ (1− β)((zk−1 − uk−1)),

F(K) and F(y), are Fourier transforms of the blur kernel K
and the observed image y, respectively, F−1 is the inverse
Fourier operator, and µ is a regularization parameter.

The framework of R-PnP-ADMM-based image deblurring
is presented in Algorithm 1.

Algorithm 1: Plug-and-play ADMM image deblurring
with relaxation

Input: blur image y, kernel K, noise level n,
pre-trained denoiser D, pre-trained HyperNet
H.

Output: final prediction x̂; relaxed prediction ẑ.
estimate hyper-parameters µ, σ, β = H(n);
initialize x0 = y u0 = 0;
for k = 1, 2, 3, · · · do

update xk by (9);
update zk by (8);
update uk by (7);

Set x̂ = xk, and ẑ = zk.
return x̂, ẑ

C. Hyperparameter network

There are three parameters to be selected/optimized in the
Algorithm 1: the regularization parameter µ, the denoising
parameter θ and the relaxation parameter β.

We apply the HyperNet module H to optimize the hy-
perparameters of the R-PnP-ADMM algorithm similar to the
method in [15],. There are two branches in the HyperNet
H, one for µ and θ estimation, and another branch for the
optimization of the relaxation parameter β. The structure of
each branch is similar the module H in [15], but in the second
branch we use a Sigmoid activation function for the final
layer, ensuring that the relaxation parameter β stays within
the range [0, 2]. Another difference of our HyperNet with one

in [15], is that it is not used for training the HyperNet with
the data module in an end-to-end manner like in [15], but
we train the HyperNet separately. The experimental results
demonstrate that the HyperNet H can efficiently optimize
the hyperparameters for any type of blur kernels and noise
levels. using only a single input, the noise level σ. Due to the
compact structure of the HyperNet module, a small training
set is sufficient for training.

III. ANALYSIS

A. Convergence analysis

The relaxed plug-and-play ADMM updates follow the equa-
tions in (9), (8), and (7). We interpret R-PnP-ADMM as fixed-
point iterations, where the fixed point (x∗, z∗, u∗) satisfies the
following equations:

x∗ = βProxαf (z
∗ − u∗) + (1− β)(z∗ − u∗), (11)

z∗ = Dσ(x
∗ + u∗), x∗ = z∗. (12)

In analyzing this algorithm, we focus on its convergence
to a fixed point. This builds on the methodology and results
from [10], [11], which examine the PnP-ADMM algorithm.
We extend these results to the R-PnP-ADMM algorithm. The
relaxation parameter β makes R-PnP-ADMM fundamentally
different from PnP-ADMM, leading to differences in solutions,
convergence conditions, and convergence rates. The main
assumptions of our analysis are on the criterion function f(x)
and PnP filter Dσ . We assume that

Assumption 1. f(x) is strongly convex and differentiable,

Assumption 2. The operator Dσ: Rd −→ Rd such that

||(Dσ − I)(x)− (Dσ − I)(y)||2< ϵ2||x− y||2 (13)

for all x, y ∈ Rd and for some ε > 0, where I is the
identity operator and the norms are Euclidean. The parameter
σ controls the strength of the filtering in PnP, we can expect
Dσ to be close to the identity for small σ. If so, it is reasonable
to assume the inequality (13).

Under these assumptions, the R-PnP-ADMM iterations are
contractive: we can express the iterations as xk+1 = Tβ(x

k),
where Tβ : Rd −→ Rd

||Tβ(x)− Tβ(y)||< δβ ||x− y|| (14)

for all x, y ∈ Rd and a contraction factor δβ < 1. If x satisfies
Tβ(x

∗) = x∗, i.e., x∗ is a fixed point, then xk converges
geometrically to x∗ with the convergence rate δβ .

Theorem III.1 (Convergence of R-PnP-ADMM). Let f be
ψ -strongly convex and differentiable, and Dσ satisfy the
Assumption 2.

Then

Tβ = (1− 1
2β)I +

1
2 (2Dσ − I)(βI)(2Proxαf − I)

+(Dσ(1− β)− (1− β)I)
(15)
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satisfies ||Tβ(x)− Tβ(y)||< δβ ||x− y||, where

δβ = (1 + 2ϵ)(
β + αψ − βαψ + 2ϵβαψ

β + αψ + 2ϵαβψ
+ (1− β)/2)− ϵ.

(16)
The convergence condition:

(1+2ϵ)(
β + αψ − βαψ + 2ϵβαψ

β + αψ + 2ϵαβψ
+(1−β)/2)−ϵ < 1. (17)

The convergence statement of the theorem is valid for the
deblurring Algorithm 1 provided that α = 1/(2µ), and ψ > 0
is the minimal eigenvalue of the operator KTK. Here, µ is a
regularization parameter from (10). It can be seen from (16)
that smaller ψ results in a lower convergence rate.

If β = 1, δ1 equals to the corresponding value δ obtained
in [11] for the algorithm without relaxation.

B. Analysis of hyperparameters

Training settings of HyperNet. A small HyperNet module,
H, is trained independently to determine the set of 3 hyperpa-
rameters used in Algorithm 1. The loss function for training
H is formulated as follows:

L(Θ) =
1

N

N∑
i

ℓ1(xi, x̂i) (18)

x̂i = Algorithm 1(yi,K,D,H(n)) (19)

where {(yi, xi)}Ni=1 denotes N blur-clean patch pairs, and D
is pre-trained denoiser. To train H, we crop the training images
into 256×256 patches, use a batch size of 2, and train for 500
epochs with the Adam optimizer and a learning rate of 0.0001.
The module is trained on an Nvidia Tesla V100 GPU with 32
GB of memory, taking approximately 1 hour to complete.

Adaptive hyperparameters or fixed hyperparameters to
iterations. To investigate whether hyperparameters should be
fixed or adaptive, we trained two variants of the H module
to optimize the regularizer trade-off parameter µ and the
denoiser parameter θ. One version of H optimizes fixed
hyperparameters, while the other optimizes adaptive hyper-
parameters. The relaxation parameter β for R-PnP-ADMM is
fixed at 0.8. In the fixed hyperparameter version, only two
constants are estimated. In contrast, the adaptive version of H
estimates parameters for each iteration, meaning the number of
parameters to be optimized is twice the number of iterations.

To make the study more comprehensive, we also trained
two types of HyperNet modules for the standard PnP-ADMM
method. For this experiment, we set the number of iterations
for R-PnP-ADMM and PnP-ADMM to 8 and 10, respectively.

In Table I, we evaluate two methods with different hy-
perparameter optimization schemes for deblurring on test set
consisting of 6 commonly used grayscale images of size
256 × 256. The evaluation metric is the peak signal-to-noise
ratio (PSNR). The results show that both methods with fixed
hyperparameters outperform those with adaptive hyperparam-
eters, achieving PSNR improvements of 0.14 dB and 0.15 dB,
respectively. This indicates that PnP-ADMM-based methods
tend to perform better with fixed hyperparameters rather than

Method adaptive hps fixed hps
PnP-ADMM 29.78 30.03

R-PnP-ADMM 30.30 30.44

TABLE I: The average PSNR(dB) results for PnP-ADMM and
R-PnP-ADMM methods; gray-scale image deblurring. The test
set is Set6. The blur kernel is uniform 9× 9; noise level (the
standard deviation of the additive noise) is 2, and hps stands
for hyperparameters.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 1: The eight testing blur kernels for image deblurring:
(a)-(b) isotropic Gaussian kernels; (c)-(d) anisotropic Gaussian
kernels; (e)-(f) motion kernels; (g)-(h) real kernels.

adaptive ones. Additionally, R-PnP-ADMM outperforms the
standard PnP-ADMM method with fewer iterations (8 vs. 10).

IV. EVALUATION

In this section, we compare the proposed R-PnP-ADMM
with several recent PnP-based image restoration methods:
DPIR [15], GS-PnP [4], and PnP-ADMM with hyperparame-
ters optimized by H, denoted as PnP-ADMM∗. These methods
are evaluated on a set of images distorted by various blur
kernels and noise levels. We used 10 different blur kernels,
shown in Fig. 1, including two isotropic Gaussian kernels
with different widths (1.6 and 2.0), two anisotropic Gaussian
kernels from [18], two motion blur kernels from [1], [8], and
four real-world camera shake kernels from [8]. Additionally,
we conducted experiments with two uniform blur kernels of
sizes 9× 9 and 17× 17. The additive noise is assumed to be
Gaussian, with one of three noise levels:

√
2, 4, or 25.

For training and testing, we generate blurred images by
convolving an image with a blur kernel and adding Gaussian
noise with a noise level of σ. For testing, we used six grayscale
images and the McM set [19] for grayscale and color image
deblurring, respectively. The proposed R-PnP-ADMM and
PnP-ADMM∗ are set to 8 and 10 iterations, respectively. The
DPIR method runs for 8 iterations, while GS-PnP stops when
it converges, with a maximum of 400 iterations.

Numerical comparison. The PSNR results for grayscale
and color image deblurring are presented in Tables II, re-
spectively. From these tables, it is clear that the proposed
method delivers the best performance, outperforming the other
methods by up to 0.49 dB for grayscale images and up to 0.77
dB for color image deblurring.

Visual comparison. Figures 2 shows the deblurred
grayscale and color images. For gray-scale deblurring, it is
evident that DPIR and GS-PnP tend to smooth high-frequency
details, such as the scarf pattern, while effectively removing
noise. On the other hand, PnP-ADMM∗ successfully recovers
the scarf pattern but retains noise artifacts. In contrast, the pro-
posed method strikes a better balance between noise suppres-
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Dataset σ Method (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Set6

√
2

DPIR 30.67 28.86 28.60 27.79 35.49 35.52 36.19 35.88 35.47 35.63 30.81 27.50
GS-PnP 30.01 28.65 28.38 27.67 34.53 35.16 35.72 35.47 35.05 35.23 30.28 27.18

PnP-ADMM∗ 30.43 28.81 28.59 27.78 35.30 35.19 36.26 35.96 35.11 35.74 30.84 27.85
R-PnP-ADMM 30.95 29.06 28.90 28.06 35.65 35.63 36.42 36.11 35.60 35.87 31.26 28.34

4

DPIR 28.99 27.95 27.68 26.93 31.99 31.89 32.36 32.01 31.96 31.84 28.48 25.48
GS-PnP 28.96 27.92 27.73 27.01 31.73 31.66 32.07 31.74 31.69 31.60 28.38 25.59

PnP-ADMM∗ 28.62 27.63 27.39 26.69 31.51 31.31 32.33 31.88 31.63 31.84 28.47 25.57
R-PnP-ADMM 29.17 28.10 27.90 27.16 32.12 31.97 32.56 32.19 31.99 32.03 28.87 26.10

25

DPIR 26.35 25.58 25.30 24.81 25.64 25.60 26.15 25.74 26.36 25.42 24.40 22.21
GS-PnP 26.13 25.48 25.21 24.81 25.57 25.36 25.96 25.60 26.15 25.19 24.44 22.59

PnP-ADMM∗ 25.64 23.58 24.72 24.36 23.87 23.54 26.11 23.66 25.73 23.56 24.13 22.35
R-PnP-ADMM 26.41 25.67 25.42 24.98 25.77 25.60 26.36 25.75 26.61 25.42 24.60 22.60

McM

√
2

DPIR 33.30 31.51 30.82 29.96 36.88 37.10 37.51 37.14 36.97 36.99 32.21 29.01
GS-PnP 32.65 30.65 29.85 29.10 35.94 36.57 36.92 36.70 36.45 36.51 31.40 28.01

PnP-ADMM∗ 33.01 31.44 31.00 30.02 36.04 36.67 37.63 36.89 36.77 36.48 32.34 28.53
R-PnP-ADMM 33.57 31.90 31.43 30.44 37.05 37.20 37.82 37.39 37.14 37.26 32.73 29.78

4

DPIR 31.75 30.22 29.67 28.85 33.50 33.53 33.85 33.54 33.64 33.34 29.87 26.82
GS-PnP 31.78 30.27 29.71 28.90 33.36 33.41 33.60 33.31 33.53 33.07 30.00 26.92

PnP-ADMM∗ 31.12 29.82 29.40 28.53 32.73 32.71 33.78 33.20 33.47 33.01 29.36 26.40
R-PnP-ADMM 31.98 30.53 30.09 29.24 33.57 33.53 34.03 33.65 33.71 33.46 30.32 27.58

25

DPIR 28.39 27.36 27.07 26.48 27.48 27.30 27.60 27.46 28.28 27.00 26.07 23.62
GS-PnP 28.17 27.33 27.05 26.54 27.48 27.43 27.48 27.40 28.11 27.05 26.46 24.29

PnP-ADMM∗ 27.50 26.65 26.41 24.24 25.58 25.08 27.30 25.24 27.54 25.83 24.93 23.25
R-PnP-ADMM 28.47 27.52 27.26 26.66 27.59 27.38 27.87 27.36 28.40 26.90 26.52 24.12

Set3C

√
2

DPIR 30.58 28.35 27.25 26.51 36.54 36.79 37.38 36.91 36.62 36.77 30.01 24.20
GS-PnP 29.79 27.03 25.90 25.14 35.64 36.05 36.69 36.22 35.99 36.07 28.35 23.61

PnP-ADMM∗ 30.40 28.51 27.75 26.82 35.97 36.09 37.55 36.67 36.13 36.48 30.55 23.17
R-PnP-ADMM 31.21 29.19 28.71 27.43 36.72 36.94 37.70 37.11 36.76 37.07 31.25 26.93

4

DPIR 28.90 27.03 25.99 25.31 32.44 32.53 33.16 32.65 32.45 32.50 26.83 21.54
GS-PnP 29.42 27.22 26.33 25.37 32.36 32.45 32.90 32.42 32.49 32.23 27.39 23.02

PnP-ADMM∗ 27.82 26.37 25.58 24.76 31.21 31.51 33.16 31.80 32.24 32.12 25.21 20.84
R-PnP-ADMM 29.44 27.66 27.09 26.03 32.64 32.63 33.40 32.80 32.66 32.69 28.00 23.93

25

DPIR 25.52 23.98 23.06 22.53 24.65 24.87 24.91 24.27 25.75 24.26 21.72 18.25
GS-PnP 25.56 24.19 23.37 22.93 25.24 25.25 25.34 25.01 25.93 24.82 22.61 19.59

PnP-ADMM∗ 24.04 22.64 21.93 19.83 20.45 20.78 24.87 19.98 24.58 21.74 20.10 17.75
R-PnP-ADMM 25.58 24.16 23.35 22.72 25.18 25.07 25.70 24.56 26.03 24.38 22.81 19.13

TABLE II: Deblurring results for different methods; gray-scale test set Set6; color test set McM and Set3C; 12 blur kernels
and 3 noise levels. The blur kernels (a)-(j) are plotted in 1, (k)-(l) are uniform kernels 9 × 9 and 17 × 17, respectively. Best
and second-best results are displayed in bold and underlined.

sion and image reconstruction, yielding a more natural result.
For the color image deblurring with a real kernel, the GS-
PnP reconstruction exhibits noticeable ringing artifacts, while
the PnP-ADMM∗ output contains visible noise artifacts. In
comparison, the proposed method restores the image without
introducing any artifacts.

Convergence analysis. We evaluated the proposed R-PnP-
ADMM and the standard PnP-ADMM, utilizing optimized
hyperparameters learned from the HyperNet module H. PSNR
values for both methods were computed over 50 iterations.
To streamline the training process, the HyperNet modules for
these methods were trained with their respective algorithms
for only 8 and 10 iterations, respectively. In addition to these
two methods, we also compare the convergence performance
of the GS-PnP [4] method.

In Fig. 3, we plot the deblurring PSNR results of these
three methods on the Barbara image (the first image in the
Set6) with the 9 × 9 uniform kernel and the noise level

√
2.

According to Fig.3, GS-PnP converges after more than 100
iterations, and standard PnP-ADMM and the proposed R-PnP-
ADMM converge in less than 20 iterations. This demonstrates
that optimizing the hyperparameters by the HyperNet yields

faster convergence. In addition, the proposed R-PnP-ADMM
surpasses the other two methods in only three iterations by at
least 0.7 dB, which proves the importance of the relaxation.

V. CONCLUSION

In this paper, we propose a relaxed Plug-and-Play ADMM
(R-PnP-ADMM) algorithm applicable to a wide range of
image reconstruction tasks. We thoroughly evaluate the al-
gorithm in the context of non-blind image deblurring. Ex-
tensive experimental results demonstrate that R-PnP-ADMM
effectively handles various blur kernel types, kernel sizes, and
noise levels. Furthermore, we introduce a simple yet flexible
HyperNet module for hyperparameter optimization and inves-
tigate the relationship between the optimized hyperparameters,
kernel size, and noise level. Additionally, we establish the
convergence of the R-PnP-ADMM algorithm. Our findings
show that the proposed R-PnP-ADMM algorithm successfully
recovers sharp, clear images across diverse conditions.
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