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† Univ Rennes, INSA Rennes, CNRS,
IETR-UMR 6164, Rennes, France

Abstract—This work focuses on the segmentation of fixed
overlay logos in videos. Although state-of-the-art video semantic
segmentation models achieve good results, they often rely on
complex architectures with high memory and computational
costs. These constraints are even more critical in video pro-
cessing, where models must handle temporal consistency and
efficiently process multiple frames. However, applications such as
discriminating overlay content from scene elements have specific
constraints and exploitable priors that make generalist models
less suitable. We present a hybrid approach that addresses this
task by combining the adaptability of deep learning with hand-
crafted spatio-temporal features. This hybrid architecture out-
performs traditional models that process frames directly or rely
solely on isolated cues, while maintaining competitive inference
times. Extensive experiments confirm its effectiveness. Our code
is available at https://gitlab.insa-rennes.fr/qmonnier/hybrid-
approach-for-logo-segmentation-in-videos/.

Index Terms—video semantic segmentation, overlay logo de-
tection, hybrid deep learning, spatio-temporal features

I. INTRODUCTION

Video content consumption constantly increases, both on-
line and through traditional broadcast. Most content can be
considered as “scene elements” as it is captured by a physical
or virtual camera. On the other hand, content can be edited
before distribution by superimposing “overlay” elements such
as logos, graphics or text. Both types of content are different
in nature, have different visual properties (textures, colors,
shapes, motion), and serve different purposes.

Often, raw footage prior to the addition of overlay elements
is not archived, meaning that later separation of the two types
of content is no longer possible. Nevertheless, it is common
for archived content to be reused later and to undergo further
transformations (conversion to HDR, upscaling, compression,
etc). Since different types of content do not respond to
transformations in the same way and serve different purposes,
one might want to re-separate them to process them differently.

This can be considered as a semantic segmentation task,
which is a well-studied area. This field is dominated by deep
learning approaches, which tend to address general tasks and
thus require complex architectures. Applying such methods
to video content leads to new constraints that often further
increase complexity and execution time.

However, segmenting fixed graphical elements is a more
constrained task. Features such as shape, position, texture,
and motion might be useful in guiding an otherwise generic
semantic segmentation model. In this work, we explore this

hypothesis by proposing a hybrid approach where a set of care-
fully selected features capturing spatio-temporal information
in a compact manner are provided to a segmentation model
instead of the raw video frames. We show that this approach
can outperform state-of-the-art models in this specific segmen-
tation task, while offering a more compact architecture.

Existing methods for detecting and segmenting fixed overlay
graphical elements in videos are discussed in Section II. We
describe the features used as input and the subsequent neural
network architecture in Section III. Finally, we evaluate the
performance of the proposed hybrid approach relative to a
traditional neural architecture, both in terms of accuracy and
execution time.

II. BACKGROUND

The goal of image segmentation is to assign a label to each
input pixel depending on its content. “Object” or “Instance”
segmentation aims to distinguish different object occurrences,
while “semantic” segmentation labels their semantic nature
(panoptic segmentation is the grouping of the two). Tasks
are also classified according to the data available for learning
(supervised, weakly supervised, unsupervised) or the degree
of user interaction required for inference to produce a result
(interactive, semi-interactive, automatic). Video segmentation
extends the image segmentation problem by introducing new
constraints in terms of temporal consistency and computational
complexity [1]. In this paper, we propose an automatic method
to perform a binary (scene element vs overlay) semantic
segmentation task on videos.

Existing logo detection methods have been designed for
various goals. Logo detection in text documents focuses on
analyzing shapes in black-and-white images rather than spatio-
temporal features [2]–[17]. Several works aim to identify
known logos from a set [2], [9], [12]–[25]. In these cases,
the goal is not to learn to distinguish logos from other content
but to recognize specific patterns in possibly degraded media.
Moreover, certain methods determine the rough position of a
logo with a bounding box, which is a less demanding task
than pixel-wise segmentation [2]–[17], [19], [20], [24]–[26].

In [27], a more precise segmentation of fixed graphical
elements is proposed, where logo detection is performed by
thresholding the differences between consecutive frames over
the duration of the video. If no logo is detected, logo seg-
mentation is performed patch-wise using a Bayesian classifier
coupled with a neural network. In [28], logos are detected
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by thresholding the sum of differences between consecutive
frames within a time window. Outliers are then removed by
applying a maximum a posteriori model to the spatio-temporal
neighborhood of each pixel. Pixel-wise temporal variation can
also be inferred from the difference between the minimum and
maximum luminances in a time window, as is done for each
video corner in [29]. Gradients can be used in different ways to
provide additional spatial and chromatic information: they can
be filtered to keep those that maintain a similar position and
direction over time [30], or averaged along the time dimension
to create a map used as a cue for logo detection [31], [32].
Alternatively, the 3D histograms of the YCbCr components of
the video corners can be used to separate the colors of the
logo from those of the background [33].

These works show that features such as pixel-wise temporal
variations, persistent gradients, or logo appearance and color
are effective cues for logo detection. However, these cues are
not used simultaneously and spatial and temporal information
is not considered together. More importantly, existing methods
often rely on arbitrary thresholds to make their decisions,
making them less flexible. The time window durations used by
the aforementioned methods can also limit their potential ap-
plications, since they cause a greater delay when the currently
processed frame is centered.

In contrast to our application, in logo removal tasks, false
positives (falsely identified as logos) or imprecise masks are
less critical because the inpainting step corrects these errors. In
addition, most of these methods focus only on the corners of
the frames. In contrast, we focus on applications where mask
precision is crucial.

Although not specifically focused on the segmentation of
fixed graphical elements, recent advances in deep learning
have led to significant improvements in semantic segmentation
for video. Unlike previous convolutional architectures, new
methods that integrate transformers and attention mechanisms
have become the new state of the art. One example is TMANet
[34], a model that ranked first on both the cityscapes [35] and
camvid [36] video segmentation benchmarks on paperwith-
code: it uses an attention module to retain temporal memory
without having to be fed multiple frames at a time. However,
these methods are complex, which comes at the expense of
inference time, ease of learning (including the amount of
training data required), and compatibility of these models with
frugal or embedded systems.

Inspired by both types of approach, in the next section, we
describe our hybrid method that aims at finding a trade-off
between efficiency and complexity with respect to the task of
scene element and overlay content segmentation.

III. PROPOSED METHOD

The key idea of our approach is to take advantage of the
specific features typically present in fixed graphical elements,
which distinguish them from the underlying video content,
and combine them with the flexibility and predictive power of
CNN-based semantic segmentation. Our hybrid approach pre-
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Fig. 1. Overview of the steps to calculate the mask of a video sequence

computes a set of hand-crafted features that serve as input to
a neural network performing the segmentation.

To compute the segmentation of a video V , our method
sequentially takes as input a temporal window of n frames
(typically n = 20) sampled at a rate of r. The input tensor
of size hv × wv × cv × n (where hv , wv , cv are the height,
width, and number of channels of each frame) is fed into a
pre-processing module that computes spatiotemporal features
(see Section III-A) in the form of feature maps of the same
spatial dimensions as the input frames.

As shown in Figure 1, the computed feature maps are then
stacked into a single tensor, normalized to zero mean and
unit standard deviation. The tensor is then fed to a small 2D
encoder-decoder CNN, which is trained to generate a binary
mask of any fixed graphic element in the sequence, based on
the features described in Section III-A.

A. Spatio-temporal Feature Computation

Fixed overlay elements present certain characteristics that
are easy to identify for a human observer, both in terms
of their spatial and temporal aspects. Existing semantic seg-
mentation networks target a wide variety of object categories
and thus consider features that are not necessarily useful
in this particular case. Even if such approaches are fine-
tuned for this specific task, the architectures remain large and
computationally intensive. Instead, we propose to use a set
of “hand-crafted” feature maps, computed from a number of
consecutive frames, as input to the segmentation network.

Based on previous work and our own experiments, we
identified three main types of features that can be used by
segmentation techniques to perform the the discrimination be-
tween the two contents: color cues, temporal variability cues,
and shape cues. However, each cue family can be used in many
different ways and implementations. For example, persistent
colors can be retrieved by computing the temporal mean of
the frames as well as their median. Temporal variability can
be computed using the standard deviation of each pixel or
the difference between its minimum and maximum luminance
values over time. The shape information is included in the
features just described, but our experiments showed that cre-
ating specific features for this cue yields better results. What
seems to condense shape information best are spatiotemporal
edges. To gather them into a single layer map, one can use the
mean, multiplication, or median of the frames edges along the
temporal dimension, use the “generalized gradient method”
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Fig. 2. A comparison of the features implementations that proved to be the
most effective when used separately (based on the logo mIoU score). Features
used in combination experiments are outlined in bold.

[30], or directly compute the edges of the temporal variation
map discussed earlier. Finally, for each type of cue, some
features might be better interpreted when inverted or instance-
wise normalized, while others might not.

Since each cue type has multiple implementation variants,
testing all combinations (with multiple runs for stability)
would exceed our available time and GPU resources. To
identify the best feature set, we did an ablation study by
first training networks (see Section III-C) on individual vari-
ants of each feature family to determine the most effective
implementation. As inference time showed little correlation
with implementation choices, we selected the best variants
based on mIoU. Figure 2 presents the results, and the retained
implementations are detailed below.

1) Mean of the Frames: Logos are often designed to be
easily distinguishable from the rest of the content visually,
for example by using specific shapes and colors. To obtain a
compact representation capturing this information, we consider
a channel-wise pixel average of the frames in the sequence,
which retains the shapes and colors of motionless areas.
Formally, let Vk be the kth frame from the temporal window.
Vk,i,j,l is therefore the pixel located at (i, j) in channel l. The
mean of the frames (MF) is therefore determined by:

MFi,j,l =

∑n−1
k=0 Vi,j,k,l

n
(1)

2) Temporal Variation: When a video contains a fixed logo,
its location is generally subject to little variation compared to
other objects in the scene. Detecting the degree of temporal
variation of each pixel is therefore a good cue for segmenting
fixed logos. With fnorm being the min-max feature scaling (0
to 1), we compute the temporal variation map (TV) using:

TVi,j = fnorm

(
max

l

(
max

k
(Vi,j,k,l)−min

k
(Vi,j,k,l)

))
(2)

Gradients are the first derivatives of the signal. They are easy
to compute and are used to detect the boundaries between
contrasting objects in the same scene. For the problem of
detecting fixed logos in video, gradients can be exploited
in different ways. Gradients that remain fixed over time can
indicate the presence of a logo. Thus, we compute G (Vi,j,k,l)

for each frame of the sequence using:

G (Vi,j,k,l) = max
l

√(
∂

∂i
Vi,j,k,l

)2

+

(
∂

∂j
Vi,j,k,l

)2


(3)
Then, we can find the maximum and minimum value at each
location, which yields a two layers feature map, called “spatial
edges” (SE), and described by:

SEi,j = {max
k

(G (Vi,j,k,l)) ,min
k

(G (Vi,j,k,l))} (4)

Finally, gradients can also extract shape information from
the temporal variability map described above. Differences in
temporal variability between different regions of the map give
rise to edges that are complementary to those that appear
directly in the frames. This temporal variability edges (TE)
map can then be combined into a “spatiotemporal edges”
(STE) map using:

STEi,j = (1 +MEi,j)× (1 +G (TVi,j))− 1 (5)
In this way, common edges between spatial and temporal edges
are highlighted, without the edges detected with just one of
the two methods being completely overlooked.

B. Dataset Creation

There is no public dataset to our knowledge for logo
segmentation in videos, but existing logo recognition datasets
provide images of brand logos. We create our own dataset
by inserting these logos into unedited videos. Some datasets
contain logos directly included in scenes (e.g., on soda bot-
tles), which we avoid. Instead, we use databases available
on www.kaggle.com with PNG logos with transparent back-
grounds, allowing for easy masking via the alpha channel.

To ensure diversity and avoid over-fitting to specific brands,
we filter out repetitive logos based on names and labels,
leaving 1206 unique logos. We then obtain different raw
videos from [37]–[40], ensuring sufficient variation and no
pre-existing graphical elements (logos, subtitles, borders). A
histogram comparison step was included to avoid scenes with
similar characteristics.

To generate the dataset, we randomly paired videos with
logos (80% of the time), resizing and positioning the logos
within the frames before re-encoding. This produced 1480
unique sequences, split into train/validation/test sets, in which
both scene elements and overlay elements are distinct. The
dataset is available at https://gitlab.insa-rennes.fr/qmonnier/l
ogos-segmentation-dataset/.

C. Network Architecture and Training

As described in Fig. 3, the neural network is a small
encoder-decoder divided into “blocks”, each consisting of two
2D convolutions with dropout, followed by batch normal-
ization and ReLU activation. The encoder consists of three
blocks interspersed with 2 × 2 max-pooling. The decoder
also contains three blocks, but the max-pooling is replaced
by 2 × 2 upconvolution to increase the feature size. Finally,
the output of the network is a simple 2× 2 convolution with
sigmoid activation. This architecture allows the neural network
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to accept images of any size as input, adapting to many types
of broadcasting contents. This architecture is deliberately very
simple, since our focus is on measuring the efficiency of the
hybrid concept, rather than carefully tuning a network and its
hyperparameters for a very specific task.

Our models are trained on the dataset for 20 epochs, using
dice loss, and the Adam optimizer. Since we chose to make
the output model size adaptive, a batch size of 1 is used.

IV. EXPERIMENTS AND RESULTS

As described in Section III, we combined selected features
and tested multiple models for segmentation. We compared
them with a 3D encoder-decoder (using 3D convolutions
to take the sequence of n frames directly as input), a 2D
encoder-decoder with frame-wise processing (no temporal
information), and TMANet [34], adapted to our dataset in
CamVid format. Since TMANet requires fixed-size inputs
(640x640), we created two alternative datasets (by resizing or
cropping) and trained/tested all models under the same condi-
tions (NVIDIA A100 GPU) for fair comparison. Performance
was measured using mean intersection over union (mIoU).
Test sequences contained unseen overlay elements to ensure
unbiased evaluation. We also analyzed training/inference times
(s) and network sizes, summarizing results averaged over
multiple runs in Table I.

Results (also depicted in Figure 4) show that in both
datasets, the frame-wise model performs poorly: relying only
on shape and color leads to false detections in untextured
areas of the frames. The 3D model effectively leverages spatio-
temporal features, predicting logos in stable regions. TMANet
results are correct for the cropped dataset; however, when
applied to the resized dataset that has a higher data imbalance,
it underperforms, likely because its temporal memory attention
is suited for complex scene semantics rather than fine-detail
segmentation as required by our task.

We retained only the best-performing feature combination:
the temporal variation map (TV) with spatiotemporal edges
(STE), which outperformed both the 3D model and TMANet
in both datasets, validating our hybrid approach. Interestingly,
although the temporal variation map alone performed the
worst, its inclusion still had a positive impact on the best
combined model. In contrast, the mean frame (MF) feature was
effective individually but did not enhance performance when
combined with other features, suggesting that some features

Seq Frame Zoom on overlay Ground Truth Our best model 3D model TMANet Framewise

Fig. 4. Some representative results from the cropped test set. Because the
display is cropped, some false positives are not visible in this figure

are complementary while others are redundant. Notably, the
best model does not rely on color, challenging our initial
hypothesis, and prior work focused on this aspect [33]. Further
analysis of segmentation errors could clarify each feature’s
role.

Since frame-wise models (2D and TMANet) produce per-
frame segmentations while others do so every 20 frames, we
use FPS to compare inference times. Our best model not
only outperforms classical methods but also has low inference
time. The bottleneck in our approach is data loading, further
demonstrating its efficiency.

TABLE I
MODELS COMPARISON. EACH DATASET HAS TWO MIOU MESURES: THE
OVERLAY CLASS (LEFT) AND THE MEAN OF THE TWO CLASSES (RIGHT)

Models Params↓ Train Infer mIoU↑
time↓ FPS↑ Resized Cropped

Our best model 118 K 9 038 60 0.736 0.865 0.774 0.880
Spatiotemporal 118 K 8 809 62 0.682 0.840 0.706 0.849
3D model 341 K 10 866 50 0.670 0.832 0.659 0.821
Spatial edges 117 K 9 058 62 0.656 0.826 0.715 0.848
TMANet [34] 31 000 K 14 140 20 0.594 0.796 0.729 0.863
Mean frames 118 K 8 911 62 0.520 0.758 0.628 0.810
Framewise 118 K 14 813 42 0.421 0.709 0.379 0.684
Temporal var 117 K 8 400 60 0.280 0.637 0.425 0.668

CONCLUSION

In this study, we have shown that the semantic segmentation
of fixed logos in videos is a particular problem due to the
inherent characteristics of this type of content. On the one
hand, fully neural architectures that use 3D convolution or at-
tention mechanisms to learn relevant spatio-temporal features
are computationally intensive. On the other hand, rule-based
methods are less flexible, especially for combining different
types of cues. Our hybrid approach combines the best of
both worlds: the specificity of rule-based features with the
flexibility and pooling power of neural networks. The proposed
model outperforms its alternatives: It has flexible input size,
fewer neurons, and shorter inference time. Future work may
extend this concept to other specific segmentation problems.
We may also explore the effect of different time windows or
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sampling rates, try to quantize and distill our neural network
to make it more compact, or change its architecture to better
handle multimodal features [41], [42]. Finally, it might be
interesting to investigate splitting the feature preprocessing and
network inference tasks into different hardware components
(e.g., CPU and NPU) to assess the gain in flexibility.
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[17] K. Paleček and J. Chaloupka, “Logo detection and identification in
system for audio-visual broadcast transcription,” in International Confer-
ence on Telecommunications and Signal Processing, 2021, pp. 357–360.

[18] S. Duffner and C. Garcia, “A neural scheme for robust detection of
transparent logos in tv programs,” in Artificial Neural Networks, 2006,
pp. 14–23.

[19] G. Xiao, Y. Dong, Z. Liu, and H. Wang, “Supervised tv logo detection
based on svms,” in IEEE InternationalConference on Network Infras-
tructure and Digital Content, 2010, pp. 174–178.

[20] B. Guan, H. Ye, H. Liu, and W. A. Sethares, “Video logo retrieval
based on local features,” in EEE International Conference on Image
Processing, 2020, pp. 1396–1400.

[21] F. Meng, H. Li, G. Liu, and K. N. Ngan, “From logo to object
segmentation,” IEEE Transactions on Multimedia, vol. 15, no. 8, pp.
2186–2197, 2013.

[22] D. Pan, P. Shi, Z. Qiu, Y. Sha, X. Zhongdi, and J. Zhoushao, “Tv
logo classification based on convolutional neural network,” in IEEE
International Conference on Information and Automation, 2016, pp.
1793–1796.

[23] D. Ku, J. Cheng, and G. Gao, “Translucent-static tv logo recognition
by susan corner extracting and matching,” International Conference on
Innovative Computing Technology, pp. 44–48, 2013.

[24] S. Y. Arafat, S. A. Husain, I. A. Niaz, and M. Saleem, “Logo detection
and recognition in video stream,” in International Conference on Digital
Information Management, 2010, pp. 163–168.

[25] C. Zhao, J. Wang, C. Xie, and H. Lu, “A coarse-to-fine logo recog-
nition method in video streams,” in IEEE International Conference on
Multimedia and Expo Workshops, 2014, pp. 1–6.

[26] J. Wang, Q. Liu, L. Duan, H. Lu, and C. Xu, “Automatic tv logo
detection, tracking and removal in broadcast video,” in Advances in
Multimedia Modeling, 2006, pp. 63–72.

[27] W. Yan, J. Wang, and M. Kankanhalli, “Automatic video logo detection
and removal,” Multimedia Syst., vol. 10, pp. 379–391, 2005.

[28] K. Meisinger, T. Troeger, M. Zeller, and A. Kaup, “Automatic tv logo
removal using statistical based logo detection and frequency selective
inpainting,” in European Signal Processing Conference, 2005, pp. 1–4.
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