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Abstract—In this work, we address a well-known challenge in
geoscience: the automatic delineation of geological layers within
a 3D seismic cube. Traditional approaches, leveraging a limited
set of annotated 2D slices, typically fall into two categories:
signal-based propagation algorithms or supervised deep learning
models. While the former struggle in regions with poor signal
quality, the latter fail to generalize to textures that deviate
from the annotated reference set. To overcome these limitations,
we propose Geo2.5D, a novel method that incorporates an
unsupervised regularization loss to better exploit prior knowledge
of the signal structure, ensuring improved alignment with the
underlying stratigraphic knowledge. Through experiments on a
well-established benchmark, we demonstrate the advantages of
our approach over conventional semi-supervised methods.

Index Terms—segmentation, 3D image processing, semi-
supervised learning, few-shot learning

I. INTRODUCTION

Seismic data, widely used in mining, oil & gas exploration,
and civil engineering, provide a representation of subsurface
geological structures, typically in the form of 3D images.
These images are constructed from seismic reflectors, which
are inferred from wave reflections captured by a network
of geophones. Estimating these reflectors involves solving
an inverse problem to reconstruct the subsurface structure.
The resulting data form a 3D seismic cube, which can be
visualized as a series of 2D slices, as illustrated in Figure 1.
Geoscientists analyze these images to identify various geolog-
ical features, such as faults, salt domes, channels, or seismic
horizons. However, manual interpretation is time-consuming
and expensive, motivating extensive research on automating
or semi-automating this process [1].

In this work, we focus on the automatic identification of
seismic horizons, which correspond to boundaries between
geological units—periods of deposition with similar sedimen-
tary characteristics. These horizons are typically identified by
changes in acoustic impedance, making them distinguishable
in seismic data. Geoscientists analyze these horizons across the
seismic cube to better understand the stratigraphic structure of
the subsurface. From a computational perspective, identifying
seismic horizons can be framed as a 3D image segmentation
problem. However, a major challenge in seismic image analy-
sis lies in the high variability of data quality and consistency.
Local distortions, discontinuities (e.g. seismic faults), or low
signal-to-noise ratios can significantly degrade segmentation
performance, motivating the development of specific methods.

Fig. 1: A depiction of (cropped) frames of the Parihaka 3D
seismic cube.

Geoscientists often rely on few-shot learning techniques,
where they manually annotate the precise contours of geo-
logical layers on a few selected 2D slices of a 3D seismic
cube. These annotated slices serve as reference frames to
guide the segmentation of the remaining data. Two main
approaches exist for this task. The first leverages statistical and
signal processing techniques to exploit the limited variation of
horizons between adjacent seismic traces. The second lever-
ages Deep Learning (DL) to learn how to associate textures
with the corresponding layers. A key limitation of the signal-
based strategies is their strong dependence on the quality of
the signal. On the other hand, DL-based methods can better
handle complex scenarios, such as seismic faults or irregular
structures, but their performance remains dependent on the
similarity of textures between the reference frames and the
target regions. In addition, DL-based strategies often treat 3D
segmentation as a series of independent 2D predictions, which
can introduce spatial inconsistencies across slices, leading to
misaligned geological structures in the final 3D reconstructed
prediction cube.

To bridge the gap between these two approaches, we pro-
pose a novel semi-supervised training procedure that combines
the texture classification capabilities of deep learning models
with a signal processing based propagation mechanism to
enforce local alignment with seismic stratigraphy. This hybrid

621ISBN: 978-9-46-459362-4 EUSIPCO 2025



strategy leverages the strengths of both methods, improving
segmentation consistency across the 3D seismic cube. We
demonstrate that our approach achieves competitive perfor-
mance on the Parihaka 3D seismic dataset, a well-established
benchmark in the field.

II. RELATED WORK

A. Signal-based propagation

Our work draws inspiration from extensive research on local
signal alignment. Some of them rely on local signal correla-
tion [2] and provide fast and effective segmentation in areas
with clear and continuous geological reflectors. Others are
based on seismic local slope [3], [4], where they try to solve
differential equations to find surfaces that align with the local
wave shift. Even in a local spatial neighborhood, seismic wave
patterns may be slightly distorted. Different approaches have
considered alignment with slight local deformations such as
Dynamic Time Warping (DTW) for horizons propagation [5],
or VoxelMorph for 4D seismic alignment [6].

B. Deep Learning Propagation

Several works have explored 3D seismic horizons propa-
gation with DL segmentation models [7]–[9]. These methods
are primarily constrained by the availability of labeled data,
which is even more costly to obtain in 3D.

Prior works have investigated semi-supervised training for
3D seismic horizon propagation, such as supervised training on
few references 2D frames combined with uncertainty reduction
in unlabeled areas with contrastive learning [10]. Another
possibility is to add physical knowledge as unsupervised
regularization as [11]. Moreover, recent work has leveraged
seismic slope in a Physic Informed Neural Network (PINN)
configuration for seismic data interpolation [12].

Other works have explored the training of foundation mod-
els, either with self-supervised pre-training followed by task-
specific fine-tuning [13], or with supervised training on both
synthetic and real datasets to estimate a seismic attribute,
called Relative Geological Time, for horizon propagation [14].

III. METHODOLOGY

Let us consider a 3D cube X of dimensions N ×H ×W .
We denote {X1, . . . ,XN} the N frames of size H×W along
the first dimension. The problem we want to solve can be
expressed as follows. We are given a few reference frames
Xref = {Xi1 , . . . ,XiL}, typically regularly spaced along
the first dimension, with their corresponding segmentation
Yref = {Yi1 , . . . ,YiL}, and we aim to predict the correct
segmentation for the remaining frames Xquery = X − Xref.
Contrary to many other settings in few-shot learning, it is
worth pointing out that we have access to all of Xquery for
the training phase, what is often referred to as “transductive
learning” in the literature [15].

A common baseline to solve this problem consists in train-
ing a Deep Learning model fθ directly on the reference data,
what we refer to as the “supervised” method in the following.
Namely, the idea is to use a common supervised loss Lsup,

such as cross-entropy or DICE for instance, and to solve
the optimization problem argminθ

∑L
j=1 Lsup(fθ(Xij ),Xij ).

The predictions are then performed independently of each
other on all remaining query frames. As mentioned in the
introduction, a main shortcoming of this approach is that it
completely disregards the consistency of the predictions along
the first dimension, leading to potentially strong misalignment
with the underlying seismic stratigraphy.

Our proposed methodology introduces two regularization
loss functions, meant to promote a better alignment with the
underlying stratigraphy on the query set Xquery. The first loss
function, denoted Lgeo, operates along the third axis, while
Lgeo⊥ , operates along the first axis. These axes are treated
independently because the reference frames being along the
first axis disrupt the problem’s symmetry. In the coming
paragraphs, we delve into more details on these two loss
functions.

A. Structure Tensor and Signal Shift

The two proposed regularization loss functions are built on
top of an accurate local wave shift estimator. There exist a lot
of such estimators in the literature [16]–[19]. We chose the
Structure Tensor [17], [18] as it provides a local estimation
with a confidence index, well suited to help better tune our loss
functions. Denoting i, j and k the indices of our voxels resp.
along the first, second and third dimensions, the 2D structure
tensor T is defined as follows:

Ti =
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(

∂Xi

∂j

)2
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(
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∂Xi
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with Gσ a Gaussian kernel with a standard deviation σ, an
hyperparameter adjusted to capture the dominant orientation
of the gradient. Ti(j, k) is a 2 × 2 symmetric positive semi-
definite matrix. We denote its two eigenvalues λi

1(j, k) ≥
λi
2(j, k) ≥ 0 with its corresponding orthogonal eigenvectors

ui(j, k) and vi(j, k). We define the coherence C as follow:

Ci =


λi
1 − λi

2

λi
1 + λi

2

∈ (0, 1) if 0 < λi
1 + λi

2

0 otherwise
(2)

The coherence C gives us a natural signal quality confidence
index. If λ2

i ≪ λ1
i , ui will be well aligned with the gradient

direction and we will locally trust the signal shift. To ensure
that the predicted horizons align with the seismic stratigraphy,
it is necessary to compute the local slope on the prediction
as well. Let us denote a prediction Ỹ = fθ(X), which
is a H × W × M tensor, with M the number of classes.
Each element Ỹ(j, k) is a probability vector indicating the
likelihood of belonging to each class. We are interested with
the estimated horizons slope, i.e. the boundary slope between
two classes. In practice, such an extraction is obtained by
applying the argmax function on Ỹ along its third dimension,
resulting in a segmentation mask, but this process is non-
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Fig. 2: Ground-truth and estimated slopes computed along
an horizon.

differentiable. We thus propose to compute an approximation
µ of the argmax function given by:

µ(Ỹ)(j, k) = (1, · · · ,M)Ỹj,k (3)

The more closely µ(Ỹ)(j, k) resembles a one-hot vector, the
better it approximates the argmax function. As µ(Ỹ) is a
2D estimated segmentation mask, a closed-form differentiable
expression could be derivated from the Structure Tensor to
approximate the prediction slope on fθ(X). Nonetheless, this
method is computationally expensive and simple derivatives
are accurate enough. The geological unit boundaries estimated
by Equation (3) are quite sharp, resulting in inaccurate slope
estimation. Thus, a Gaussian kernel G with a standard de-
viation kernel σ′ is applied before the computation of the
derivative. The estimated horizons local slope vector ũ on a
prediction Ỹ is given by:

ũi(j, k) =

(
∂(µ(Ỹi) ∗Gσ′)(j, k)

∂j
,
∂(µ(Ỹi) ∗Gσ′)(j, k)

∂k

)
(4)

Prediction shifts given by Equation (4) are cheap to com-
pute and differentiable, as both smoothing (Gaussian filter)
and derivatives (Sobel filters) can be approximated with 2D
convolutions. As shown on Figure 2, the signal structure near
one horizon is slowly changing.

B. Stratigraphy alignment

To constrain the overall prediction of the model, we verify
that the local seismic slope u is collinear to the predicted
horizon slope ũ. In a 2D context, this criteria is equivalent to
verifying that v is orthogonal to ũ, which is more convenient
to compute. The regularization loss along the third axis, Lgeo
is defined as follows:

Lgeo(Xi, Ỹi) =
1

H ×W

H∑
k=1

W∑
j=1

|Ci(j, k)
α⟨vi(j, k)|ũi(j, k)⟩|

(5)
with α ∈ R a confidence modulation hyperparameter.

Similarly, a regularization loss Lgeo⊥ can be derived where
the predictions are still computed on 2D frames along the
third axis but the regularization and Structure Tensor are

applied along the first one. Let us consider K consecutive
2D frames {Xi, . . . ,Xi+K−1} and their associated predictions
{Ỹi, . . . , Ỹi+K−1}, with K the window size. The geometric
loss function Lgeo is computed independently on the truncated
orthogonal inputs {X⊥

1 , . . . ,X
⊥
W } of size H × K and the

predictions {Ỹ⊥
1 , . . . , Ỹ

⊥
W } of size H × K × M . The reg-

ularization loss along the first axis, Lgeo⊥ , is as follows:

Lgeo⊥

(
(Xj , Ỹj)j∈(i,i+K−1)

)
=

1

W

W∑
j=1

Lgeo(X
⊥
j , Ỹ

⊥
j ) (6)

The regularization defined in Equation (6) is computationally
expensive to evaluate, as it requires K consecutive predictions.
Ideally, we would like K = W as it would provide a global
alignment along the entire first direction, anchored by the
reference frames, but it would be intractable in practice. To
take advantage of the reference frames, while mitigating the
computational cost, we work with 5 ≤ K ≤ 10 and a
custom batch sampling strategy. More specifically, batches are
initially sampled close to references frames, and then gradually
sampled further away.

C. Training Procedure

The integration of our three objective functions Lsup, Lgeo
and Lgeo⊥ require careful consideration, as the latter two are
designed to refine the outcomes of the supervised objective.
Therefore, we decided to divide the training process into multi-
ple stages, beginning with a initial supervised training phase,
followed by two additional regularization phases. Numerous
regularization schemes could be designed as long as regu-
larization in different directions does not lead to conflicting
objectives. It is often possible for a prediction to be locally
aligned with seismic slope in one direction but not in another
one. Thus, we chose to start to align the geometry on each
query frames with Lgeo, and subsequently align query frames
between them, with respect to the underlying seismic data,
with Lgeo⊥ . We call the strategy Geo2.5D, defined by the three
following training stages:

1) Pure supervised training with Lsup on the L images of
Xref. The model fθ must have converged properly on
the few reference frames. The global loss function is
L = Lsup.

2) Supervised with Lsup on Xref and unsupervised train-
ing with Lgeo on Xquery. The global training loss is
L = λ2,supLsup + λ2,geoLgeo with λ2,sup > 0 and
λ2,geo > 0. We keep the supervised training objective
to prevent an over-regularization that would degrade the
overall performance. The training batches are sampled
randomly.

3) Supervised with Lsup on Xref, unsupervised training with
Lgeo on Xquery, and Lgeo⊥ on Xquery⊥ . The orthogonal
loss training set is Xquery⊥ = {(Xi, · · · ,Xi+K−1), i ∈
(1, N−K+1)}, with batches sampled with the strategy
mentioned above. The global loss function is L =
λ3,supLsup + λ3,geoLgeo + λ3,geo⊥Lgeo⊥ with λ3,sup > 0,
λ3,geo > 0 and λ3,geo⊥ > 0.
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IV. RESULTS

In this section, we evaluate our method on a classical
benchmark in the field, the Parihaka dataset [20]. As our
work explores slope based regularization, we used a modified
version of it, presented in [11], in which the geological units
follow locally the seismic slope. The seismic cube has a size
of N ×H ×W = 777× 590× 1006, and the corresponding
segmentation is composed of 7 different classes. Our reference
dataset is composed of 3 frames Xref = {X192,X384,X576}.
Our method, Geo2.5D, alongside its variations tested out in
the following sections, are presented with U-Net model [21],
albeit the method is architecture-agnostic.

A. Regularization stages ablation

To evaluate each training steps of our method, we propose
to compare Geo2.5D with three ablated variations, as reported
in Table I. The overall number of epochs was adjusted for
each experience to fully converge. We selected two classical
segmentation metrics, mIOU and F1, to assess the segmenta-
tion results. To evaluate the stability along the first direction,
we compute metric h, which is defined as follows:

h(n) =
1

HW

∣∣∣∥∥1Z∗(Yn −Yn+1)
∥∥2 − ∥∥1Z∗(Ỹ′

n − Ỹ′
n+1)

∥∥2∣∣∣
(7)

where 1Z∗ is the element-wise indicator function of Z∗ and
Ỹ′ = argmax Ỹ is the predicted segmentation mask. As the
seismic data, and the corresponding segmentation mask, have
a progressive spatial evolution, we expect the predictions the
have a similar variability. Note that the h metric alone does
not reflect the quality of segmentation. We report in Table I
the performance of the different configurations. First, the two
regularization losses, when applied individually, improve the
segmentation results and reduce the spatial instabilities along
the first direction. Nonetheless, the orthogonal regularization
(+8.3% of mIOU compared to the baseline) outperforms the
second configuration (+7.0% of mIOU compared to the base-
line), presumably as it benefits from reference frames anchor
points. Furthermore, combining the regularization losses in
Geo2.5D, surpasses all 3 other experiments (+10.1% of mIOU
compared to the baseline).

TABLE I: Evaluation of the performances of each regulariza-
tion losses on the overall results.

Lsup Lgeo Lgeo⊥ mIOU ↑ F1 ↑ h̄ (×10−3) ↓
✓ 87.1 92.5 9.04

✓ ✓ 93.2 96.4 2.39

✓ ✓ 94.3 96.9 2.24

✓ ✓ ✓ 95.9 97.9 0.54

B. Regularization losses ablations

We report in Table II the comparison of Geo2.5D with
using Random Sampling (RS) for Xquery⊥ . Custom sampling
surpasses Random Sampling in segmentation scores, whereas

Random Sampling seems to provide a similar spatial stability.
We hypothesize that, as Random Sampling does not rely on
reference frames as anchors, the local alignment may often
be accurate with the seismic slope but misaligned with the
reference frames.

TABLE II: Performance on different sampling strategies for
Xquery⊥ .

mIOU ↑ F1 ↑ h̄ (×10−3) ↓
Geo2.5D RS 94.9 97.3 0.50

Geo2.5D 95.9 97.9 0.54

C. Benchmark Parihaka

To better evaluate our method, we selected a standard super-
vised baseline, corresponding to the first setup in Table I, along
with two other competitive approaches: a contrastive based
method CONSS [10] and a semi-supervised method based
on an empirical stratigraphic stacking assumption presented
in [11]. We report in Table III the comparison of results on
the considered Parihaka dataset. Our method outperforms both
semi-supervised ones while providing a better spatial align-
ment, emphasizing the efficacy of slope-based regularization.

TABLE III: Performance on modified Parihaka dataset. The
computational times were measured using a single A100 GPU.

mIOU ↑ F1 ↑ h̄ (×10−3) ↓ Time (min)
Supervised 87.1 92.5 9.04 3

Stratigraphic [11] 91.6 95.4 3.19 11

CONSS [10] 95.0 97.4 1.76 45

Geo2.5D (ours) 95.9 97.9 0.54 41

We compare in Figure 3 two frames of the predicted 3D
cube, with the four selected methods, one of the query dataset
and one along the first axis. Although the stratigraphic method
removes major layer inconsistencies, both the baseline and
the stratigraphic methods demonstrate limited accuracy in
predicting horizons in both directions. Our method provides
an overall better approximation in both directions, while
CONSS shows superior performance in areas with poor slope
confidence (bottom horizon of yellow class).

V. LIMITATIONS & FUTURE WORK

a) Blurry interfaces: depending on the task, geoscientists
may look for geological units with interfaces not delineated by
a relatively clear reflector, which is often the case in eroded
areas. In such conditions, our method tends to underperform
as the Structure Tensor and its confidence may not be reliable.

b) Multi-Directional regularization: seismic interpreta-
tion often requires examining the 3D cube along multiple
directions to fully grasp the stratigraphic structure. A natural
enhancement of our method would be to leverage the strati-
graphical alignment on multiple 2D plane, similar to [22] but
with regularization losses.
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(a) Baseline (b) Strati [11] (c) CONSS [10] (d) Geo2.5D

(e) Baseline (f) Strati [11] (g) CONSS [10] (h) Geo2.5D

Fig. 3: Benchmark predictions with the 4 different cases. The first row (a-d) shows the results on query frames. The second
row (e-h) presents the results on the orthogonal prediction plane. Red dotted lines are the ground truth horizons and the blue
dotted lines are the positions of references frames along the orthogonal direction.

VI. CONCLUSION

In this paper, we address the challenge of the 3D segmen-
tation of seismic cubes, using a few 2D frames as references.
We proposed a method leveraging both signal-based properties
of seismic data, specifically the Structure Tensor, and a DL
model to provide predictions in a 2.5D manner. Our experi-
ments suggest that our combined strategy can achieve better
performance on competitive benchmarks compared to classical
alternatives based on supervised or semi-supervised learning.
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