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Abstract— Robust perception is essential for ensuring the safe
operation of autonomous systems in smart mobility. Multi-
task learning (M-TL) enhances perception by simultaneously
addressing multiple tasks, improving efficiency, and optimizing
performance. This paper introduces MT3D-Seg, a novel MT-
L framework that integrates 3D object detection and drivable
area segmentation, with a primary focus on 3D object detection.
Trained on the KITTI dataset, MT3D-Seg leverages shared
feature representations to handle complex road scenarios effec-
tively. Experimental results demonstrate high accuracy across
both tasks while reducing computational overhead, making it
a promising solution for real-time environmental perception in
autonomous driving.

I. INTRODUCTION

Advancements in autonomous driving necessitate efficient
real-time perception systems for tasks like object detection,
drivable area segmentation, and 3D spatial understanding.
Traditionally, these tasks were handled by separate models,
increasing computational costs. While 2D detection models
like YOLO [1] and Faster R-CNN [2] are fast and accurate,
3D detection models such as PointNet [3] and VoxelNet
[4] enhance spatial understanding but remain computation-
ally demanding. Multi-Task Learning (M-TL) improves ef-
ficiency by sharing feature extraction across tasks. Models
like YOLOP [5] and MultiNet [6] integrate 2D detection and
drivable area segmentation, optimizing performance for real-
time applications. However, integrating 3D object detection
into M-TL frameworks remains a challenge due to its com-
plexity.

This work addresses this gap by introducing an M-
TL model that combines 3D object detection and drivable
area segmentation in a unified architecture. Using a shared
encoder-decoder structure, our approach enhances spatial
perception while optimizing computational efficiency, mak-
ing it suitable for real-time autonomous systems. Figure 1
illustrates our model’s input and output transformations.

The paper is structured as follows: Section II reviews
related work, Section III details our methodology, Section
IV describes training procedures, Section V presents exper-
imental results, and Section VI concludes with findings and
future directions.
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(a) Input.

(b) Output.

Fig. 1: Illustration of model processing: the input image (a) is transformed
by our model to generate 3D object detections and drivable area segmenta-
tion (b).

II. RELATED WORK

In this section, we explore deep learning solutions for the
two core tasks object detection and drivable area segmenta-
tion, and provide an overview of related multi-task learning
approaches.

A. Object Detection

2D object detection methods include one-stage models like
YOLO and SSD [7], which prioritize speed, and two-stage
models like Faster R-CNN [2], which improve accuracy at
the cost of inference time. 3D detection can be image-based,
as in Mono3D [8], or rely on point clouds, like PointNet [3]
and PV-RCNN [9]. Mono3D uses geometric reasoning to
infer 3D bounding boxes from monocular images, offering a
cost-effective alternative to LiDAR-based approaches.

B. Drivable Area Segmentation

Semantic segmentation models like DeepLab, SegNet [10],
and U-Net [11] enable precise pixel-wise predictions crucial
for autonomous driving. These architectures leverage atrous
convolutions, encoder-decoder designs, and skip connections
to enhance segmentation accuracy and efficiency.

C. Multi-Task Learning

M-TL frameworks enhance efficiency by sharing repre-
sentations across tasks. Mask R-CNN [12] extends Faster
R-CNN with instance segmentation, while MultiNet [6]
and YOLOP [5] combine detection, segmentation, and lane
detection within a unified model. However, most existing
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M-TL frameworks focus on 2D tasks, highlighting the need
for models that integrate 3D detection to improve spatial
perception in autonomous systems.

III. METHODOLOGY

We propose MT3D-Seg, an efficient feed-forward net-
work for multi-task learning that jointly performs 3D object
detection and drivable area segmentation. As illustrated in
Figure 2, MT3D-Seg consists of a shared encoder for feature
extraction and two task-specific decoders. This design en-
hances efficiency by leveraging shared representations while
optimizing task-specific outputs.

A. Encoder

MT3D-Seg adopts CSPDarknet [13] as the encoder
backbone, a lightweight yet powerful architecture used in
YOLOv4 [14] and YOLOP [5]. CSPDarknet enhances gradi-
ent flow, reduces computational cost, and facilitates efficient
feature propagation. Additionally, the encoder integrates
Spatial Pyramid Pooling (SPP) [15] and Feature Pyramid
Network (FPN) [16] modules. SPP captures multi-scale fea-
tures, while FPN merges semantic information across layers,
improving object detection and segmentation performance.

B. 3D Detection Decoder

The 3D detection head in MT3D-Seg extends the anchor-
based YOLO framework, optimized for multi-task learning.
Inspired by lightweight detection models [17], it employs
an FPN [16] and a Path Aggregation Network (PAN) [18]
to enhance multi-scale feature extraction. The detection
head predicts: 2D bounding boxes to locate objects in
the image plane. 3D bounding box parameters, including
object center (x, y, z), dimensions (width, height, length),
orientation (yaw angle), and depth estimation (distance from
the camera). These predictions enable robust 3D scene un-
derstanding, facilitating obstacle detection for autonomous
navigation.

C. Segmentation Decoder

The segmentation decoder in MT3D-Seg follows a
lightweight design inspired by YOLOP. The bottom layer
of the FPN feeds into the segmentation branch, producing
feature maps of size (W/8,H/8, 256). We apply three
upsampling steps using nearest interpolation to restore the
output to (W,H, 2), where each pixel represents the prob-
ability of being part of the drivable area or background.
Unlike traditional Fully Convolutional Networks (FCNs)
[19], MT3D-Seg integrates multi-scale features efficiently,
improving segmentation in complex road scenes. The sim-
plified decoder structure ensures high-precision predictions
while maintaining real-time inference speeds, making it well-
suited for autonomous driving applications.

IV. M-TL DEVELOPMENT & TRAINING DETAILS

A. M-TL Loss Function

The loss function of MT3D-Seg is a critical component
that drives the optimization process for both 3D object

detection and drivable area segmentation. We define the
global loss Lglobal as a weighted sum of the individual losses
associated with these two tasks, as in equation 1:

Lglobal = β1L3D + β2Lsegmentation (1)

where β1 and β2 are coefficients that adjust the relative
importance of each task in the overall optimization. The 3D
detection loss L3D encompasses several components: the loss
for the center of the bounding box Lcenter, the dimensions
of the bounding box Lsize, the distance to the ground truth
Ldistance, the orientation of the bounding box Lorientation, and
the classification loss Lclass. This can be expressed as in
equation 2:

L3D = α1Lcenter+α2Lsize+α3Ldistance+α4Lorientation+α5Lclass
(2)

Each component is assigned a coefficient αi to ensure a
balanced contribution to the total loss, facilitating effective
learning across tasks. The segmentation loss Lsegmentation
employs Cross Entropy Loss with Logits, represented as in
equation 3:

Lsegmentation = − 1

N

N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)]

(3)
Where N is the number of pixels, yi is the ground truth

label, and pi is the predicted probability for each pixel. By
combining these loss functions, the global loss effectively
guides the training process, enhancing the accuracy of both
object detection and segmentation, and promoting a more
integrated understanding of complex scenes, making it par-
ticularly suitable for applications in smart mobility.

B. KITTI Dataset

We trained MT3D-Seg on the KITTI dataset [20], a widely
used benchmark for autonomous driving. KITTI provides
3D object detection and drivable area annotations, enabling
precise localization and navigation. However, it lacks lane
segmentation annotations, unlike datasets such as BDD100K
[21]. This limitation prevents us from incorporating lane
detection, emphasizing the need for more comprehensive
datasets for integrated autonomous driving solutions.

C. Implicit Function Theorem for Backpropagation

We incorporate the Implicit Function Theorem (IFT) into
backpropagation, following the MinBackProp approach [22],
to enhance stability and efficiency. Unlike gradient surgery
[23] or weight balancing [24], which require manual tuning,
IFT resolves gradient conflicts implicitly, optimizing without
extra hyperparameters. IFT reformulates gradient computa-
tion as an implicit function, preventing numerical instability
in multi-task learning. In traditional backpropagation, direct
gradient computation can be unstable, especially in complex
settings. By applying IFT, we compute stable gradients
efficiently, as shown in Equation 4:
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Fig. 2: Architecture of MT3D-Seg with a shared encoder and two decoders for 3D object detection and drivable area segmentation.

dL

dθ
= −

(
∂f

∂y

)−1
∂f

∂x

dL

dx
, (4)

Where f(x, y) = 0 satisfies IFT conditions. This implicit
differentiation enables robust gradient computation with re-
duced overhead.

Algorithm 1 details the IFT-based backpropagation pro-
cess, ensuring stable parameter updates:

Algorithm 1 IFT-based Backpropagation

Require: Parameters θ, loss L(θ), function f(x, y) = 0
1: for each iteration do
2: Compute L(θ), ∂L

∂x , ∂f
∂x , ∂f

∂y

3: Apply IFT: dL
dθ ← −

(
∂f
∂y

)−1
∂f
∂x

∂L
∂x

4: Update θ with dL
dθ

5: end for
6: return Optimized θ

By leveraging IFT, MinBackProp achieved 100% stability
and a 10× speedup. Similarly, our model benefits from
improved convergence, reduced computation time, and en-
hanced robustness, making it highly suitable for real-time
autonomous perception tasks.

V. EXPERIMENTAL RESULTS AND ANALYSIS

This section presents the evaluation of our M-TL model
for 3D object detection and drivable area segmentation,
highlighting its robustness and efficiency for autonomous
driving. The model was trained with a learning rate of 10−4

using an NVIDIA A100 GPU with 48 GB of memory.

A. Traffic 3D Object Detection

For the results section of our 3D object detection, we
provide both qualitative and quantitative evaluations to

demonstrate the effectiveness of our approach. As shown
in Figure 3, the qualitative results indicate that our model
accurately detects 3D objects in complex traffic scenes,
producing clear and reliable bounding boxes.

Our quantitative evaluation, summarized in Table I, as-
sesses 3D object detection performance using Recall and
Mean Average Precision (mAP) at IoU 0.7. These metrics
enable comparison with single-task models and provide in-
sight into our model’s ability to detect 3D objects in complex
scenes. Class detection is evaluated, as accurate 3D bounding
box regression relies on precise region proposals and object
classification. We also evaluate key components of our 3D
pipeline:

• Dimension Prediction: We assess dimension estimation
using the Dimension Score (DS) as defined in [27]. The
DS is computed as equation 5:

DS = min

(
Vpd

Vgt
,
Vgt

Vpd

)
, (5)

Where Vpd and Vgt represent the predicted and ground
truth object volumes, respectively.

• Principal Box Estimation: The accuracy of the pre-
dicted 3D bounding box center is measured using the
Center Score (CS) from [27], which accounts for pro-
jected center coordinates and bounding box dimensions.
Given x and y as the projected center coordinates in
pixels, and w and h as the width and height of the 2D
bounding box, the CS is defined as in equation 6:

CS =
2 + cos

(
xgt−xpd

wpd

)
+ cos

(
ygt−ypd

hpd

)
4

. (6)

• Orientation Evaluation: Following the KITTI bench-
mark, we assess orientation accuracy using the Orien-
tation Score (OS), defined as equation 7:
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Fig. 3: Visualization of the traffic 3D Object detection results of our model.

TABLE I: Comparison of traffic 3D detection models. The values show recall, mAP at IoU 0.7, DS, CS, OS, and processing speed (FPS).

Network (Type) Recall (%) mAP70 (%) DS CS OS Speed (FPS)

Mono3D (No M-TL) 8.6 15.0 - - - 0.5
PointNet (No M-TL) 11.1 72.5 - - - 3.1
VoxelNet (No M-TL) 41.0 83.2 - - - 10.3
Complex-YOLO (No M-TL) [25] 85.1 63.6 - - - 50.0
BirdNet+ (No M-TL) [26] 86.7 51.4 - - - 10.0
Lightweight 3D (No M-TL) [17] - - 0.88 0.96 0.92 -
Joint Monocular 3D (No M-TL) [27] - - 0.962 0.918 0.974 -
MT3D-Seg (M-TL) 84.2 77.5 0.98 0.971 0.972 48.1

Fig. 4: Visualization of the drivable area segmentation results of our model.

OS =
1 + cos(αgt − αpd)

2
. (7)

Given that no existing multi-task learning model integrates
3D object detection as a primary task, we compare our results
to state-of-the-art single-task models focused solely on 3D
object detection to establish a performance benchmark. By
incorporating these diverse evaluation criteria, we provide a
comprehensive analysis of our model’s performance, high-
lighting its strengths in both accuracy and computational
efficiency. While our results are competitive with models
like VoxelNet, BirdNet+ [26], and PointNet, our approach
stands out for its efficiency. Unlike these models, which
require high-dimensional processing and intensive LiDAR
data treatment, our model offers a more balanced trade-off

between performance and speed, making it well-suited for
real-time applications.

B. Drivable Area Segmentation

The qualitative results, illustrated in Figure 4, emphasize
our model’s effectiveness in segmenting drivable areas across
diverse scenes, showcasing consistent clarity and accuracy in
delineating navigable regions. These visual examples affirm
the model’s adaptability to complex, real-world scenarios and
highlight its precision in segmentation, which is critical for
autonomous driving applications.

Table II presents the quantitative performance of MT3D-
Seg, benchmarked against MultiNet, DLTNet, PSPNet [28],
and YOLOP. Using Intersection over Union (IoU) to assess
segmentation accuracy, our model achieves competitive re-
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sults. While YOLOP attains a slightly higher IoU, our model
offers a notable advantage in processing speed due to its
two-task setup versus YOLOP’s three-task structure. This
efficiency makes it well-suited for real-time applications,
ensuring fast and accurate scene analysis. These results
highlight the model’s effectiveness for autonomous driving
perception.

TABLE II: Quantitative comparison of drivable area segmentation
with other models, showing mean Intersection over Union (mIoU)
and speed in frames per second (FPS).

Network (Type) mIoU (%) Speed (FPS)

MultiNet (M-TL) 71.6 8.6
DLTNet (M-TL) 71.3 9.3
PSPNet (M-TL) 89.6 11.1
YOLOP (M-TL) 91.5 41.0
MT3D-Seg (M-TL) 89.8 48.1

VI. CONCLUSION & PERSPECTIVES

This paper introduces a network architecture MT3D-Seg
that integrates 3D object detection and drivable area seg-
mentation within a multi-task learning framework, enhanc-
ing computational efficiency and scene understanding for
autonomous driving. Trained and evaluated on the KITTI
dataset, the model demonstrates robust performance across
both tasks. While effective, its current scope is limited to
3D object detection and drivable area segmentation. Future
work will extend its capabilities to include tasks such as lane
detection, real-time tracking, and environmental classifica-
tion, while further optimizations will refine its performance
to meet or exceed state-of-the-art benchmarks in autonomous
driving and smart mobility applications.
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