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Abstract—One-shot-object detection (OSOD) aims to detect
novel object classes using a single example of an unseen class.
Cross-domain OSOD is a more challenging problem since the
seen and unseen objects are sampled from the entirely disjoint
datasets. The majority of the existing CD-OSOD methods focus
on image datasets where the video domain remains largely unad-
dressed. To tackle this problem, we introduce a one-shot cross-
domain video object detection (CD-OSVOD) model enabling
adaptation from the still image to the video. Specifically the
novel target object is designated as the query shot and a target
driven cross-domain finetuning (FT) scheme is integrated with a
baseline object detector. To address the requirements of the long
term video object detection, the FT scheme is augmented with
a novel Online Target Update (OTU) mechanism, enabling the
detector to handle challenges such as appearance changes and
occlusions. The OTU is controlled by a temporal aggregation
module (TAM) which leverages temporal information in video
and triggers update of the one-shot query when the temporal
consistency is disrupted. The proposed CD-OSVOD utilizes base
models trained on COCO and VOC still image datasets and
successfully adapts to the video domain for novel object classes.
Performance evaluations on challenging VOT-LT benchmarking
video dataset demonstrate significant improvement in AP50 and
mAP scores, highlighting the effectiveness of the proposed domain
adaptation approach.

Index Terms—Video object detection, cross-domain learning.

I. INTRODUCTION

Video object detection aims to localize and classify objects
of interest across the video frames. Although recent progress in
deep learning led to build object detectors with high accuracy,
achieving robust generalization performance requires large
annotated datasets, making training data preparation labor-
intensive. In addition, generalization to unseen (novel) object
classes requires complicated retraining processes. Few shot
object detection (FSOD) methods are introduced to transfer the
knowledge gained on data-abundant seen (base) classes in the
training phase to the data-scarce novel classes in the inference
phase. Subsequently , one-shot object detection (OSOD) has
emerged as a more challenging approach, aiming to detect all
instances of a novel class using only a single query sample of
an unseen object.

Early studies on FSOD and OSOD primarily focused on nat-
ural still images, assuming that the training and test sets share
the same category labels [1]-[3]. More recent OSOD research
has extended to video object detection. Several models have
been proposed, such as tube proposal network with temporal
matching network [4] and self-supervised spatial-temporal
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feature enhancement for one-shot video object detection [5].
[6] introduces QDETR, which leverages information from the
query image along with the spatio-temporal context of the tar-
get video, significantly improving the precision of target object
localization. Differ from these models, the recent works focus
on cross-domain scenarios (CD-OSOD), where the source
and target domains contain entirely disjoint object categories.
Distill-cdfsod [7] introduces several still image datasets and
a distillation-based cross-domain learning method. CD-ViTO
[8] employs domain-enhanced vision transformers to improve
feature alignment across domains.

However, existing CD-OSOD approaches predominantly re-
strict domain shifts to still images, overlooking the challenges
of adapting models from images to videos. This limits the use
of CD-OSOD in real-world video applications, where objects
exhibit temporal variations and motion-induced distortions.
Additionally, this requires repeat after the base training of the
network in the related domain, that consumps an extensive
training effort.

To address these challenges, we propose a novel Cross-
Domain One-Shot Video Object Detection (CD-OSVOD)
framework. Our main contributions are as follows: i) We
propose an inference network that facilitates the cross-domain
learning through a one-shot finetuning layer and the Temporal
Aggregation Module (TAM) integrated into the architecture.
To tackle the online processing requirements of various video
-based applications, our approach adopts a one-shot learning
strategy. ii) We introduce an unsupervised target query shot
update mechanism to enhance the cross-domain video object
detection. Specifically, in order to improve robustness to
occlusion and appearance changes of the query object across
the video frames, we augment the one-shot finetuning with a
novel Online Target Update (OTU) mechanism controlled by
TAM. iii) Differ from the existing work, we leverage the base
OSOD models trained on the still image datasets, to alleviate
the need for an extensive base training in the video domain.
Consequently, the proposed CD-OSVOD framework enables
cross-domain adaptation without retraining on the base object
classes.

II. LEARNING THE BASE OBJECT CLASSES

In a one-shot video object detection (OSVOD) setup, the
training procedure is performed in two-stages. The first stage,
referred to as base training, aims to learn generalizable rep-
resentations from a large-scale dataset Dy,s. that contains
abundant annotated instances of seen (base) object classes.
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Fig. 1: Overall inference architecture of CD-BHLR-OTU.

At the second stage referred to as the novel training, the
domain adaptation on novel set D,,,,¢; With only one sample
for each unseen (novel) class is achieved. It is important
to note that in the OSOD setup, the base classes the base
classes Cpqse and novel classes Chope; are non-overlapping,
i.e., Chase N Crover = 0. In addition, the cross-domain OSOD
(CD-OSOD) tackles a more realistic scenario in which the
distribution of the base domain Py, differs from that of the
target novel domain P,y;. Under this setting, the ultimate goal
of the CD-OSOD is to train a robust object detector based
on the Dyyse, then localize and classify unlabelled objects of
a novel query set Dgyery With object classes Coyery, Where
Cquery C Crover. For our cross-domain one-shot video object
detection (CD-OSVOD) setting, the base dataset consists of
still images from either the COCO [9] or VOC [10] datasets.
We used the challenging VOT-LT [11] as the novel dataset,
due to it is a benchmarking dataset in the long-term video
object tracking.

A. Training Network Architecture

In our cross-domain framework, we adopt the Balanced
and Hierarchical Relation Learning (BHRL) network [2] as
the base training model due to its strong performance on
still images. Originally designed as a one-shot object detector
without fine-tuning mechanism, BHRL is denoted as BHRL-
C in our setup to distinguish it from the designed novel
training network. The BHRL-C architecture comprises three
main components: a Region Proposal Network (RPN), an
Instance-Level Hierarchical Relation (IHR) module for multi-
level relation modeling, and an R-CNN head for final detection
and classification.

Given a target object query Q C Dgyery and an input
image I, feature maps are extracted using a ResNet-50 back-
bone integrated with a Feature Pyramid Network (FPN). To
associate the query object with regions in the input image, a

similarity map is computed between the feature representations
of () and I using the SiamMask mechanism. This similarity
map is then passed to the RPN, which generates a set of
candidate bounding box proposals likely to contain the queried
object. The IHR module processes the similarity maps of these
proposals to learn and integrate attention-level, contrastive-
level, and salient-level relations. The output of the IHR module
is forwarded to the R-CNN head, which performs the final
object detection and classification of instances related to the
query.

B. Training Loss

During the training phase of BHRL-C [2] on the base object
classes, one-shot parameter learning is performed using a ratio-
preserving loss function, as defined in Eq. 1.
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In Eq.1, £ denotes the softmax cross-entropy loss value
for the proposal i. Ry, and Ry, respectively denote the set of
false positives and true negatives. N is the number of proposals
generated by RPN. BHRL improves the one-shot learning via
the dynamic weights u and v formulated in Eq.2 where « is
the static sample balancing rate. Ny, and Ny,, respectively
denote the number of false positives and true negatives, and
N, refers the number of positive samples for the given base
query from class Chgse.-
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III. DETECTION OF THE NOVEL VIDEO OBJECTS

The inference network architecture of the proposed CD-
OSVOD system is illustrated in Fig. 1. Unlike the existing
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works [7], [8], we first perform the base training on still-image
object detection datasets, then apply cross-domain adaptation
to novel classes in the video dataset. By building on pre-
existing “off-the-shelf” base detectors trained on still-image
datasets, our method avoids lengthy base-training cycles while
still achieving adequate performance in the video domain.

Specifically, the designed detector referred to as CD-BHRL-
OTU employs the base models trained by the vanilla BHRL-
C on COCO or VOC still image dataset objects and made
available to public access [2]. The cross-domain adaptation is
achieved by the integration of a one-shot fine-tuning layer and
a Temporal Aggregation Module (TAM) within the inference
pipeline. In this setup, the query shot is sampled from one
of the novel object classes present in the video domain. In
our implementation, a target object from the first frame of the
challenging VOT-LT video dataset—belonging to an unseen
class—is designated as the one-shot query. Following this, the
CD-BHRL-V network performs end-to-end cross-domain fine-
tuning to improve adaptation to the temporal and appearance
dynamics of the video domain. The trained model is then used
to perform object detection on the remaining frames of the
video, which collectively serve as the novel evaluation set.

In order to improve robustness to occlusion and appear-
ance changes of the query object across the video frames,
we augment the one-shot finetuning with a novel Online
Target Update (OTU) mechanism controlled by a temporal
aggregation module (TAM). To handle requirements of a long
term online video object detection, the proposed CD-BHRL-
OTU enables an unsupervised one-shot target update every K
frames. Here unsupervised means the one-shot query update
is performed by the detected video object bounding boxes
through the online processing. K is a hyperparameter that
needs to be specified depending on the application and the
desired processing speed. When K is set to 1 CD-BHRL-
OTU performs object detection after finetuning at each frame.
However to minimize the processing load without reducing the
object detection accuracy, we control the target update frames
by TAM.

In this strategy, detected objects with confidence scores
exceeding a predefined threshold thrc are considered as one-
shot query candidates. For each candidate, the Intersection
over Union (IoU) with the latest query bounding box is moni-
tored by TAM to leverage temporal information in video. The
one-shot query update is triggered when IoU remains less than
a threshold that shows the temporal consistency is disrupted.
To guarantee an effective long term video object detection,
every K frames, the OTU mechanism re-initializes the one-
shot finetuning by updating the query with the candidate
having the highest score (most confident detection) or if there
is no candidate with the initial query sample.

IV. PERFORMANCE EVALUATION

Our code is implemented in Pytorch on top of the official
code of the baseline architecture BHRL-C!. All evaluations

Thttps://github.com/hero-y/BHRL

are conducted with the GeForce RTX 4090 GPU. Excluding
the finetuning, the accomplished inference rate on a 1280x720
video is 21.2 frames per second. Conventional AP50 and mAP
metrics are used in the performance evaluation. For AP50,
predicted bounding boxes that meet the IoU > 0.5 condition
are considered true positives (TP) and AP50 is calculated by
finding the area under the precision-recall curve obtained for
these bounding boxes. The average of all AP values for ten
IoU thresholds from > 0.50 to > 0.95 is reported as mAP.

A. Comparison with SOTA on Still Images

As of our knowledge this work is the first attempt on the
cross-domain OSVOD. Therefore we evaluated cross-domain
performance on still image datasets to compare it with the
state-of-the-art (SOTA) detectors. Following the setting used in
[71, [8], CD-OSOD performance of BHRL-C (CD-BHRL-C) is
reported on datasets ArTaxOr, UODD and DIOR, declared as
the still image cross domain benchmarking datasets in [7], [8].
For this evaluation, we used the original class-based BHRL-
C configuration as presented in [2], hence reported the mAP
scores achieved over 5 runs with the base training COCO
model. The mAP scores reported in Table I demonstrate that
CD-BHRL-C outperforms or achieves comparable scores with
the SOTA methods listed in the table, without finetuning.
It is important to note that all of the listed SOTA methods
except [7] and [12] are transformer-based architectures with a
significantly higher number of learnable parameters compared
to 48.4M parameters of CD-BHRL-C. This encouraged us to
select BHRL-C as the baseline method in the design of our
video object detector. In order to demonstrate the impact of
finetuning we repeated the same test but performing a class-
based finetuning on the query still images. The CD-BHRL-C-
FT mAP scores reported at Table I highlight the performance
improvement achieved by the proposed finetuning mechanism.

TABLE I: Cross-Domain OSOD mAP scores for the novel
object classes where the base training is performed on COCO.

Methods ArTaxOr | UODD | DIOR
Distill-cdfsod [7] 5.1 59 10.5
Detic [12] 0.6 0.0 0.1
Detic-FT [12] 32 4.2 4.1
DeViT [3] 0.4 1.5 2.7
DeVIT-FT [3] 10.5 2.4 14.7
VITDeT-FT [13] 5.9 4.0 12.9
CD-VITO [8] 21.0 3.1 17.8
CD-BHRL-C(Ours) 144 4.1 13.0
CD-BHRL-C-FT (Ours) 17.6 3.8 14.2

B. Online Cross-domain Performance on Video

To evaluate the proposed CD-BHRL-OTU on the video, we
have adopted to the online video object detection. The detector
without target query update is referred to as CD-BHRL-FT.
Both CD-BHRL-FT and CD-BHLR-OTU are finetuned with
the query shot specified as the ground truth object in the first
frame. For a fair comparison, following the setup in [2], the
evaluations are performed using BHRL-C base training models
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Fig. 2: Impact of the query update on Person20 video sequence where the person is a novel object class for the base training
on COCO split-3 . CD-BHRL-FT(magenta), CD BHRL-OTU (yellow), GT (red). Unsupervised query update is executed at

frame 1300.

TABLE II: Cross-domain AP50 and mAP scores reported on
VOT-LT videos for the base training on different COCO splits.

Unseen (Novel)
Method spit I split2  split3  splitd  Avg
= CDBORL Vi, | 3285 5305 5172 5353 41.72
£ CD-BHRL-FT | 6605 60.18 60.09 6033 61.66
< (CD-BHRL-OTU | 6980 6623 6981  63.65 67.37
o CDBHRL-Viy | 1664 2682 2610 2771 2432
< CD-BHRLFT | 3525 3177 3467 3248 3351
& (CD-BHRL-OTU | 3603 37.66 3701 3188 3565

TABLE III: Cross-domain AP50 and mAP scores reported on
VOT-LT videos for the base training on VOC image dataset.

Unseen (Novel)
Method APS0  mAP
CD-BHRL-V 5¢ 1149  3.85
CD-BHRL-FT 58.05 29.82
CD-BHRL-OTU | 6420 31.03

trained on the four splits of the MS-COCO dataset, as well
as the Pascal VOC dataset. In order to demonstrate object
detection performance of the vanilla BHRL-C on video, the
same query shot is fed into the network and detections across
the video frames are evaluated. It is referred to as CD-BHRL-
Vi to distinguish it from BHRL-C.

The VOT-LT benchmarking video dataset [11] is used for
the evaluation in a cross-domain one-shot object detection
setting. Each 50 videos of VOT-LT dataset has different
numbers of frames, ranging from 1100 and 26277. When it is
active, a 100 iterations finetuning is applied on the query shot.
The target query update is triggered on the detections having at
least 0.85 confidence score whenever the IoU between the best
detection and the last target query bounding box remains less
than 70%. Due to the diverse scene dynamics, the number of
target updates varies significantly across videos. Note that in a
video with L frames, the update mechanism can be activated
at most L/K times where K is set to 100 for the reported
results. The number of target updates is reported as 25.9 in
average, with a value per video is ranging from 2 to 163.

Video object detection performance achieved with the base
training on COCO image dataset is reported at Table II. AP50
and mAP scores achieved on the novel (unseen) classes of
VOT-LT videos are reported. Results demonstrate that the
integrated finetuning mechanism of CD-BHRL-FT provides

13.94% increase on average AP50 compared to CD-BHRL-
Vis:. Impact of the proposed target update mechanism is
an extra 5.71% gain achieved by CD-BHRL-OTU. Gain on
average mAP achieved by CD-BHRL-FT compared to CD-
BHRL-V4; is reported as 9.19%. CD-BHRL-OTU provides
an extra 2.14% increase. We have also reported the detection
performance on the seen object classes, means the target video
object classes overlapping with the image classes. Respectively
3.91% and 2.68% higher average AP50 and mAP scores are
achieved by CD-BHRL-OTU. This is because diversity of the
video objects compared to the still images.

In order to evaluate the generalization capability of the
proposed framework, we have tested the performance with a
different baseline model, specifically the model generated by
the base training on VOC image dataset. Table III demonstrates
the detection performance increase achieved by the proposed
detectors. Specifically, CD-BHRL-FT provides 46.56% in-
crease on average AP50 compared to CD-BHRL-V ;. Impact
of the proposed target update mechanism is an extra 6.15%
gain achieved by CD-BHRL-OTU. Gain on average mAP
achieved by CD-BHRL-FT compared to CD-BHRL-V; is
reported as 25.97%. CD-BHRL-OTU provides an extra 1.21%
increase. Similar to the base model trained on COCO image
dataset, base training on VOC image dataset is successfully
transferred to the video domain by the proposed CD-BHRL-FT
and CD-BHRL-OTU architectures. Additionally, impact of the
finetuning by CD-BHRL-FT is higher than the COCO model
case. In our opinion, this is mainly because of the number
of object classes in VOC is smaller than COCO that makes
the finetuning with the query video shot crucial in domain
adaptation.

Video frames illustrated in Figure 2 visually demonstrate
impact of the Online Target Update mechanism. As it can
be seen from frame 962 results, both CD-BHRL-FT and
CD-BHRL-OTU well localize the target object bounding box
specified in the first frame. However because of the excessive
scale and pose changes across the video frames, CD-BHRL-FT
fails to track the target object at frame 1315, while CD-BHRL-
OTU robustly detects the target as a consequence of the target
query update at frame 1300.
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V. CONCLUSION

We propose a cross-domain one-shot inference architecture
for the online video object detection applications. Differ from
the existing work, we aim to transfer the base learning from
image to video domain. The proposed fine-tuning scheme,
supported by an unsupervised target shot update mechanism,
can be seamlessly integrated into existing baseline one-shot
detectors, facilitating adaptation to the video domain. The
achieved AP50 and mAP scores demonstrate that the proposed
framework has a potential to highly increase the novel video
object detection rates without an additional base training thus
alleviates a substantial reason of drastic performance drops in
video object tracking-by-detection. Supplementary material is
available at https://github.com/msprITU/CD-BHRL-OTU.
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