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Abstract—Hoarding is a mental-health problem manifested by
excessively saving items irrespective of their value. One factor
considered in the assessment of hoarding severity is the amount
of clutter in a dwelling, usually quantified through a visual scale
called the “Clutter Image Rating” (CIR). This requires a visit
to an individual’s home and rating clutter on the CIR scale,
a time-consuming, subjective, and often non-repeatable process.
To date, several methods were proposed for automatic rating of
clutter from images but were evaluated on relatively narrow and
unbalanced datasets. In this paper, we introduce a new 1,800-
image, balanced dataset of clutter images that has been CIR-
rated by health professionals. We also propose a new method
for rating clutter that is based on the Vision Transformer. We
evaluate the proposed method against a state-of-the-art clutter-
rating method on two datasets via 4-fold cross-validation. We also
perform two ablation studies (loss-function parametrization and
data augmentation). In quantitative comparisons, we measure
accuracy and accuracy within ±1 since even health and human-
service professionals admit to challenges in assigning exact CIR
values. The proposed method is shown to outperform the best
method to-date by 4.50-7.12% points in exact CIR matching and
by 5.80-6.53% points in matching with a slack of ±1. Even more
importantly, the new method achieves accuracy of over 93% with
a slack of ±1 suggesting it can be a reasonable proxy for ratings
by health professionals and a valuable tool in the assessment and
treatment of hoarding disorder.

Index Terms—Hoarding, Room clutter, Image clutter, Vision
Transformer, ResNet, Deep learning

I. INTRODUCTION

Hoarding disorder (HD) is a complex and impairing mental-

health and public-health problem characterized by persistent

difficulty and distress associated with discarding ordinary

items regardless of their value and resulting in clutter in the

living space [1]. In severe cases, hoarding poses health risks,

including fires, falls, and poor sanitation [2]. In general, the

quality of life of a person with HD is markedly, adversely

affected [3], and family relationships are often strained [4]. In

the United States, the prevalence of HD is about 5% of adult

population [5] and is a serious social issue [4].

HD is identified through a detailed psychological assess-

ment with the individual involved, preferably carried out in

their home to properly evaluate the clutter and how it affects

their life [6]. In 2008, a novel method, called the “Clutter

Image Rating” (CIR), was introduced [7]. It proposes a set

of 9 reference images with varying levels of clutter in a

Fig. 1. Reference kitchen images proposed by Frost et al. [7] for image-based
assessment of hoarding clutter according to CIR scale. Numbers shown below
images are the assigned CIR values.

living room, bedroom and kitchen (Fig. 1) for assessing the

severity of hoarding. The CIR method allows individuals with

hoarding challenges, their family members, trained experts, or

independent evaluators to measure the clutter in an individual’s

living space by visually matching the space to one of reference

images (CIR = 1 corresponds to an uncluttered space, whereas

CIR = 9 corresponds to a fully-cluttered space). However,

this approach is time-consuming, subjective, and can lack

consistency in its repeatability.

In the last few years, automated CIR assessment methods

have been developed with benefits of being instantaneous,

objective (not dependent on assessor’s mood, subjectivity, etc.)

and repeatable (the same image always results in the same CIR

value). Tooke et al. [8] introduced two methods combining

Histogram of Oriented Gradients (HOG) [9] feature extractor

with Support Vector Machine (SVM), used either as regressor

or classifier, to assess CIR value from an image. On a set of

620 images, their SVM-based classifier outperformed SVM-

based regressor, and achieved 72% accuracy in assessing CIR

value within ±1 off the ground truth using 4-fold cross-
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validation. Subsequently, Tezcan et al. [10] proposed to use

ResNet-18 deep-learning model and expanded the clutter-

image dataset to 1,323 images. Pre-trained on ImageNet [11]

and then fine-tuned and tested on the new dataset their

approach achieved 81% accuracy within ±1 off the ground-

truth CIR in 4-fold cross-validation. This was a significant

result since the HOG+SVM approach of Tooke al. [8] re-tested

on the new dataset achieved only 60%.

In this paper, we expand the dataset developed by Tezcan

et al. [10] to 1,800 images; we increase the variety of clutter

scenarios and ensure balanced class memberships. We also

develop a new image-clutter classification method based on

the Vision Transformer (ViT) [12]. Since the collection and

rating of hoarding-related images is very difficult and time-

consuming, the new dataset is still relatively small. Therefore,

we expand data augmentation introduced by Tezcan et al.

[10] to support training. We compare our method with Tezcan

et al.’s ResNet-18 model [10] on their dataset and on the

new dataset using two accuracy metrics (with and without

slack). We also perform two ablation studies, one regard-

ing data augmentation and the other regarding loss-function

parametrization to balance two accuracy objectives.

We make 3 contributions in this paper:

1) we introduce a new clutter-image dataset,

2) we propose a new clutter classification algorithm and

enhanced data augmentation for its training,

3) we evaluate performance of the new algorithm against

state of the art in rating clutter from images.

II. NEW CLUTTER-IMAGE DATASET

Collecting and rating images of hoarding clutter is difficult

and labor-intensive. First, finding such images is very chal-

lenging. Although quite a few videos can be found on-line,

one has to select frames that are sufficiently different from

one another, field of view is sufficiently wide, no people are

recognizable (privacy), logos are not obtrusive, etc. Secondly,

each image must be rated by a health professional to assign a

CIR value. This can be problematic since even professionals

have sometimes challenges with precise assignment of a CIR

value (e.g., the rating may be between a 4 and a 5). This

ambiguity impacts how we define the loss function and how

we measure a method’s performance.

We expanded the dataset developed by Tezcan et al. [10]

from 1,323 to 1,800 images, a 36% increase, and made

both publicly available as HINDER (Hoarding and INDoor

cluttER) datasets. Unlike the previous dataset, the new dataset

is balanced - all CIR classes contain 200 images, and includes

a wider range of clutter scenarios. Table I lists the number

of images for each CIR class in both datasets and provides

download URLs. Fig. 2 shows one sample image from each

class of the new dataset. Clearly, the value of CIR assigned to

an image grows as the degree of clutter in a space increases.

However, for higher degrees of clutter even professionals may

have difficulty assigning an exact CIR value. As can be seen

in the third row of Fig. 2, images rated as CIR = 7 and CIR =

8 have clutter reaching up to about one-half of room’s height.

However, in the CIR = 7 image the window is almost fully

visible and the two door frames at the back of the room are

filled up with items up to about half of their height. On the

other hand, in the CIR = 8 image items reach up to about

80% of the door-frame height and are more evenly spread-out

and up to a higher level, resulting in larger volume of clutter.

This assessment is relative and subjective, but absent physical

measurement of clutter volume it is the only option.

III. PROBLEM STATEMENT

We formulate CIR assessment as a supervised classification

problem. Let {Ik ∈ R
w×h×3}Nk=1 be a set of N color images

of width w and height h, and let ξk ∈ {1, 2 . . . 9} be the

ground-truth CIR rating for image Ik. Given N image-CIR

pairs (I1, ξ1), (I2, ξ2), . . . , (IN , ξN ), the goal is to find a

mapping Ik → ξ̂k to predict the CIR rating ξ̂k of an unseen

clutter image Ik. Note, that in all experiments we use cross-

validation so each image is considered unseen at some point.

To measure performance, we use Correct Classification Rate

(CCR) for it captures multi-class classification accuracy (sum

of diagonal entries over sum of all entries in the confusion

matrix). However, as we already discussed, assigning ground-

truth CIR values bears some uncertainty. Therefore, we follow

earlier work and, in addition to CCR, we also use its variant

proposed in [8] to measure performance:

CCR1 =
1

N

N∑

k=1

1(|ξk − ξ̂k| ≤ 1) (1)

where 1(x) is an indicator function (1 if x is true, 0 if x is

false). The use of CCR1 in addition to CCR is motivated by

the fact that professionals encounter challenges when assign-

ing CIR values. While CCR measures the exact accuracy of

CIR estimates, CCR1 measures accuracy within ±1.

IV. CIR PREDICTION USING THE VISION TRANSFORMER

A. Architecture adaptation

We adapt the Vision Transformer architecture [12] to our

clutter classification problem as follows.

• Preprocessing: We resize all images to 224×224 pixels,

and divide each image into 16×16 patches (blocks). This

results in a structure S ∈ R
K×(16×16×3), where K = 196

is the number of patches in each image.

• Patch embedding and positional encoding: We map

each patch to a vector of length D = 256 by means

of a fully-connected layer. This results in a 2-D matrix

X ∈ R
K×D of patch embeddings that is passed to

the Transformer Encoder along with positional encod-

ing (learnable 1-D embedding) of each patch. Another

learnable embedding is prepended to X to convey image

information to transformer output and then to MLP head.

• Transformer Encoder: Subsequent encoding operations

are identical to those in the original Transformer model

developed for language applications [13].

• MLP head: The output of the Transformer Encoder is fed

into a simple MLP (single fully-connected layer) with a

9-class output to allow CIR classification.
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TABLE I
NUMBER OF IMAGES IN EACH CIR CLASS AND DOWNLOAD URLS FOR THE 2018 AND NEW DATASETS.

CIR Download URL 1 2 3 4 5 6 7 8 9 Total

HINDER-2018 dataset [10] vip.bu.edu/hinder-2018 128 163 127 107 156 191 225 129 97 1,323

HINDER-2025 dataset (new) vip.bu.edu/hinder-2025 200 200 200 200 200 200 200 200 200 1,800

CIR = 1 CIR = 2 CIR = 3

CIR = 4 CIR = 5 CIR = 6

CIR = 7 CIR = 8 CIR = 9

Fig. 2. Sample images from all CIR classes in the new HINDER-2025 dataset. Note that dataset images have varying dimensions and aspect ratios. Images
presented above were selected to have similar aspect ratios for visualization purposes and were resized to the same horizontal dimension.

B. Implementation of ViT-based CIR classification

Since ViT is a large model (330MB in our adaptation),

training it from scratch with a dataset of 1,800 images is

counterproductive. Instead, we employ transfer learning; we

use vit_base_patch16_224 model from the timm li-

brary [14] initialized with weights pre-trained on ImageNet

[15]. We adapt this model to CIR classification by setting the

number of output classes to 9, and we fine-tune the MLP head

using our dataset while keeping the transformer unchanged.

To optimize the ViT performance for our dataset, we per-

formed grid search to find optimal training parameters. We

explored various combinations of the learning rate (0.0001,

0.001, 0.01), and of its decay period (5, 7, 9 epochs). We

used stochastic gradient descent (SGD) for training and found

that the learning rate of 0.001 that drops by half after every

5 epochs, performs best. For consistency with Tezcan et al.’s

[10] experiments, we adopted a momentum of 0.9 and mini-

batch size of 32.

V. LOSS FUNCTION

To achieve high accuracy (CCR), a commonly-used loss

function is the cross-entropy. Applied in the context of one

image-CIR pair number k, a single-label loss function can be

written as follows:

LS
k = −

9∑

i=1

ξ1k[i] log
exp(ξ̂k[i])∑9
j=1 exp(ξ̂k[j])

(2)
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where ξ1k is a one-hot encoded vector of the ground-truth CIR

value for image number k, and ξ̂k is the output of the last

layer of the MLP head (before softmax). The goal of this loss

function is to achieve high accuracy without consideration

for potential uncertainty in the ground-truth values. During

prediction of CIR for image number k, we select the largest

component of ξ̂k (corresponding to the highest probability):

ξ̂k = argmax
i

(ξ̂k[i]). (3)

As we pointed out, the CCR1 metric (1) tolerates ±1
errors. This requires a different problem definition - the ground

truth is considered a multi-label value. The training data now

include image-label pairs (Ik,Ξk), where Ξk is a set of three

consecutive CIR values, namely Ξk = {ξk − 1, ξk, ξk + 1}.

In this formulation, an image is associated with three different

CIR labels (except for boundary cases of CIR = 1 and CIR =

9, when it has two labels only). Since we cannot assign three

different labels during prediction, we need to find a function

that maps an unseen image Ik to a CIR label ξ̂k ∈ Ξk.

To afford this type of classification, we use multi-label,

binary cross-entropy between the sigmoid output of MLP

head’s last layer and a three-hot encoded ground truth. Applied

to a single input-CIR pair number k, this loss function can be

written as follows:

LM
k = −

9∑

i=1

(
ξ3k[i] log

1

1 + exp(−ξ̂k[i])
+

(1− ξ3k[i]) log
exp(−ξ̂k[i])

1 + exp(−ξ̂k[i])

)
(4)

where ξ3k[i] is a three-hot encoded vector of the ground truth,

i.e., ξ3k[i] equals 1 for i ∈ Ξk, and 0 otherwise. During

prediction, we again choose ξ̂k’s largest component (3).

We follow Tezcan et al.’s [10] approach and linearly com-

bine single- and multi-label loss functions for N images in a

mini-batch:

L =

N∑

k=1

(1− λ)LS
k + λLM

k , (5)

where parameter λ can be used to adjust the balance between

CCR and CCR1 performance.

VI. DATA AUGMENTATION

Due to a relatively small dataset size, both Tooke et al. [8]

and Tezcan et al. [10] applied data augmentation by means of

horizontal and vertical image shifts by 5, 10, or 15 pixels, and

a horizontal “flip”. However, the maximum shift of 15 pixels

is very small even for 224×224 images, so very little visual

information (clutter) is changed. To allow more significant

visual “jitter”, we increased the maximum range of shifts to

±30 pixels while keeping 5-pixel increments. We also applied

a horizontal “flip”. Furthermore, since pictures of clutter are

taken at a variety of angles (frequently not aligned with room

features, e.g., door or window frames, room corners), we

added an additional geometric augmentation by means of ran-

dom image rotation up to ±9 degrees in 1-degree increments.

Finally, because of the diversity of cameras used as well as a

wide range of possible illumination conditions, we also applied

color-jitter augmentation. This method increases data diversity

by randomly altering the visual attributes of images, such as

brightness and contrast, as well as color saturation and hue,

thereby aiding the model in better generalizing to unseen data.

Examples of such augmentations can be found in [16].

VII. EXPERIMENTAL RESULTS

In experiments below, we ran each scenario 10 times, each

time over 50 epochs, and computed average CCR and CCR1

from the highest respective values in the last 10 epochs.

A. Loss function tuning

In order to identify the value of weight parameter λ (5) that

best balances algorithm performance in terms of CCR and

CCR1, we ran experiments for 0 < λ < 1 with a step of

0.1. Fig. 3 shows CCR and CCR1 as a function of λ for

ResNet-18 and ViT-based algorithms on both datasets. Plots

for both datasets exhibit similar trends. Unsurprisingly, CCR1

increases with a growing λ since more and more weight is

given to LM
k (4) which allows ±1 CIR mismatch. As for

CCR, as expected, it is higher for λ = 0 than for λ = 1 since

at λ = 1 a predicted CIR value is allowed to be within ±1
off the ground truth, so CCR is likely to decrease. However,

for 0.1 ≤ λ ≤ 0.9 CCR slowly grows, which is surprising

since less and less weight is given to LS
k (2) so one would

expect lower and lower CCR values. Taking a deeper dive

into these results we observed that for 0.1 ≤ λ ≤ 0.9 exact

matches (contributing to CCR) may occur not only for images

exactly-predicted by algorithms trained with either λ = 0 or

λ = 1, but also for other images. We believe this is due to

non-linear behavior of both ResNet-18 and ViT.

In Fig. 3, CCR (solid lines) is highest for λ = 0.9, while

CCR1 (dashed lines) is highest at λ = 0.9 for ViT and the

new dataset, and otherwise it is a very close second. Therefore,

we use λ = 0.9 in the remaining experiments.

B. Impact of data augmentation

One contribution of this work is enhanced data augmenta-

tion compared to earlier approaches. Table II shows CCR and

CCR1 performance for the ResNet-18 [10] and VIT-based

methods with no augmentation, with baseline augmentation

[8], [10], and with the new, enhanced augmentation (Sec-

tion VI). As can be seen, the baseline augmentation improves

performance of both methods compared to no augmentation by

1.19-3.60% points in terms of CCR and by 1.12-2.73% points

in terms of CCR1, across datasets and methods. The proposed

enhanced augmentation further improves performance by 1.55-

3.90% and 0.53-1.92% points, respectively.

Overall, the proposed method with new data augmentation

outperforms ResNet-18 by 4.50-7.12% points in CCR and

by 5.80-6.53% points in CCR1 across the two datasets.

Importantly, the new algorithm achieves CCR1 of over 93%

with CCR exceeding 53% on the new dataset. This suggests

that algorithmic clutter rating close in performance to ratings

by health professionals is within reach.
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Fig. 3. Plots of CCR and CCR1 for different values of λ (5) for ResNet-18 [10] and proposed ViT-based algorithms on both datasets.

TABLE II
IMPACT OF DATA AUGMENTATION ON PERFORMANCE OF RESNET-18 AND

VIT-BASED CLUTTER-RATING METHODS ON TWO DATASETS (λ = 0.9).

Augmentation
ResNet-18 [10] ViT (proposed)

CCR CCR1 CCR CCR1

HINDER-2018 dataset [10]

None 0.4243 0.8061 0.4476 0.8557

Baseline 0.4362 0.8173 0.4837 0.8811

Enhanced 0.4652 0.8284 0.5102 0.8864

HINDER-2025 dataset (new)

None 0.4064 0.8206 0.4897 0.9014

Baseline 0.4296 0.8479 0.5191 0.9187

Enhanced 0.4634 0.8671 0.5346 0.9324

VIII. CONCLUSIONS

We have developed a new method for rating living-space

clutter from images which can be useful in the assessment of

hoarding and other clutter-related health challenges. We also

introduced a new dataset of clutter images, HINDER-2025,

rated by health providers who work with people with hoarding,

using the CIR. The new method, based on the Visual Trans-

former, outperforms the previous best clutter-rating method

based on ResNet-18 by up to 7% points in terms of exact CIR

matching and by up to 6.5% points in terms of matching within

±1, when tested on two datasets. Importantly, the new method

achieves accuracy of over 93% within ±1 off the ground truth

suggesting it can be a reasonable proxy for assessment by

health and human-service professionals who sometimes have

challenges with exact assignment of CIR value. Used by an

individual with hoarding, family member or another trusted

party via a smartphone/tablet app, our ViT-based clutter-rating

method can be a valuable tool in the assessment and treatment

of hoarding and other health challenges associated with clutter.

We are currently developing such an app for field testing with

housing authorities and other community partners.
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