Enhancing DL-based Cell Segmentation of
Microalgae with Classical Image Processing Priors
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Abstract—We present a hybrid approach for the automatic de-
tection and segmentation of Nannochloropsis Oceanica, Wild Type
(NocWT) microalgae cells, combining classical image processing
techniques with deep learning. Initially, we apply traditional
computer vision methods to detect and count cells efficiently, but
these struggle with challenges such as morphological variability
and overlapping structures. To overcome these limitations, we
incorporate the Segment Anything Model (SAM), a state-of-the-
art segmentation framework leveraging a transformer archi-
tecture pre-trained on large-scale datasets. Instead of relying
solely on SAM’s general capabilities, we guide its segmentation
using pre-segmented regions derived from classical methods,
improving accuracy in delineating complex cell boundaries. The
proposed method is evaluated on a manually annotated dataset
of bright-field microscopic images, ensuring reliable performance
assessment despite the dataset’s limited size. By integrating the
interpretability of traditional approaches with the adaptability of
deep learning, our method achieves robust and precise microalgae
segmentation, demonstrating the advantages of a complementary
strategy over standalone state-of-the-art techniques.

Index Terms—Microalgae, automatic detection, cell counting,
segmentation bright field microscopy, image processing

I. INTRODUCTION

Microalgae are a valuable resource for sustainable biomass
production, with applications in food, cosmetics, and biofuels
[1]-[3]. Due to their high photosynthetic efficiency, microalgae
convert solar energy into biomass at a rate much higher than
other crops, requiring fewer water resources and avoiding ex-
tensive land use. Their use aligns well with circular economy
principles, as algal biomass can be repurposed for applica-
tions like fertilizer production [4] or biogas energy recovery
[5]. However, large-scale industrial adoption is hindered by
challenges that limit their competitiveness compared to other
biomass sources.

A major barrier to industrial microalgae production is the
difficulty in scaling laboratory methods to manufacturing pro-
cesses [6]. Expanding cultivation systems introduces complex-
ities in managing environmental factors like temperature, light,
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and nutrients, all critical for growth. Additionally, industrial
environments increase the risk of contamination by pathogens,
which can reduce productivity and biomass quality [7]. The
lack of reliable predictive models that describe the interaction
between environmental factors and production performance is
another challenge, complicating process optimization and in-
creasing operational costs [8]. Addressing these issues requires
advanced monitoring and automation technologies to enhance
efficiency and sustainability in large-scale production.

To ensure stable production, integrating advanced image
processing tools is crucial for real-time monitoring of mi-
croalgal cultures. These systems must capture and analyze
microscopic images of algal cells, detecting early signs of
stress before irreversible damage occurs. Automated analysis,
powered by AI models, enables continuous monitoring and
process optimization, improving reliability and reducing labor
and costs.

In this paper, we present a hybrid approach for the automatic
detection, counting, and segmentation of Nannochloropsis
Oceanica, Wild Type (NocWT) microalgae cells, leveraging
the strengths of both classical computer vision techniques and
state-of-the-art deep learning models. Our method is tested
on a manually annotated dataset of bright-field microscopic
images. While the dataset is limited in size due to the need for
high-quality ground-truth validation, it remains representative
of typical cell morphology and imaging conditions, ensuring
the reliability of performance evaluation. The first phase of
our study employs traditional image processing, optimizing
a combination of filters and operations to accurately detect
and count cells. While these classical methods offer efficiency
and interpretability, they often struggle with challenges such as
variations in cell morphology, overlapping structures, and non-
uniform lighting conditions, which can compromise segmenta-
tion accuracy. To address these limitations, we integrate an ad-
vanced segmentation strategy based on the Segment Anything
Model (SAM) [9], a cutting-edge deep learning framework that
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leverages transformer architectures pre-trained on large-scale
image datasets. Unlike conventional deep learning models that
require extensive task-specific training, SAM autonomously
isolates elements in an image with minimal supervision. By
providing pre-segmented regions as guidance, we refine and
enhance SAM’s segmentation output, enhancing its ability to
delineate complex cell boundaries. By combining the precision
of traditional methods with the adaptability of Al-driven
segmentation, our approach enhances accuracy and reliability
in microalgae cell analysis, demonstrating the advantages of a
complementary methodology over standalone techniques.

II. RELATED WORKS

Microalgae image analysis has been the focus of extensive
research, particularly in detection and classification [10], [11].
However, a critical aspect often overlooked is the preser-
vation of morphological structures, which can be achieved
through precise segmentation. While numerous methods for
general cell segmentation exist [12], the specific application
to microalgae presents unique challenges due to their diverse
morphologies, potential for overlapping colonies, and low
contrast against complex backgrounds. To address this, various
studies have explored both semantic and instance segmentation
approaches, each presenting advantages and limitations.

The study in [13] compares semantic segmentation of
diatoms!, which assigns class labels at the pixel level, and
instance segmentation, which delineates individual diatom
instances. Findings highlight that while Mask-RCNN exhibits
robust separation of individual objects, overall accuracy is
dependent on the efficiency of the Region Proposal Network
(RPN). Conversely, SegNet [14] displays superior sensitivity
but lower specificity, often misclassifying cellular structures as
background debris. Moving beyond traditional segmentation
methodologies, the work in [15] proposes AlgaeSeg-YOLO, a
modified YOLOvS8n-seg [16] architecture integrating a convo-
lutional (CBF) module. This enhances mean Average Precision
(mAP) while maintaining computational efficiency. However,
this method still faces challenges in scenarios with severe algal
overlap, limiting its effectiveness in densely packed microalgae
samples.

Complementary research has focused on real-time pro-
cessing and visibility constraints in microalgae segmentation.
FastSAM [17] successfully segments colonies and filaments in
complex aquatic environments. Nonetheless, its performance
is hindered by low image contrast when detecting smaller
elements. Similarly, [18] employs Pairwise Deep Learning
Features (PDLF) within a SegNet framework, leveraging a
combination of Shi-Tomasi descriptors [19] and VGG-16
features [20] to enhance the segmentation of barely visible
microorganisms. While this improves accuracy, it introduces
increased computational complexity and requires fine-tuning.

Beyond domain-specific models, generalist approaches have
been investigated to tackle bioimaging and object extraction
challenges. DeepCell [21] is a freely available deep learning

ISingle-celled algae.

TABLE I: Description of the cell dataset.

Dataset name # of total images Image size [px]

BF_NocCCAP849/10 155 1920 x 1080

Factor scale [um/px] # of annotated images (Ground-truth)

10 um/78 px 155 (Detection/Counting) [ 30 (Segmentation)

framework developed for biological image analysis. It pro-
vides a collection of pre-trained models specialized in tasks
like single-cell segmentation, tracking, and classification in
microscopy images. CellSAM [12] represents an innovative
solution that integrates the Segment Anything Model (SAM)
with a CellFinder, a transformer-based object detector de-
signed to identify cellular structures, to improve segmentation
accuracy. This approach enables accurate zero-shot segmen-
tation, demonstrating the potential of combining broad Al-
driven models with domain-specific object extraction tech-
niques. Most existing approaches rely solely on deep learn-
ing for feature extraction. Incorporating conventional image
processing techniques for cell detection can provide valuable
priors, aiding in the initialization of segmentation methods and
ultimately enhancing overall segmentation quality.

ITII. CELL DATA
A. Image dataset

The dataset used in this study consists of high-resolution
images obtained through optical microscopy, or bright-field
(BF) microscopy, a widely used technique for observing
biological samples. In this method, a beam of light from a
source below the microscope slide passes through the sample.
Regions of higher density absorb more light, creating contrast
and allowing the visualization of cellular structures. This
technique enables precise assessment of cell morphology and
dimensions, with clear boundaries.

The images in this dataset contain numerous uniformly
sized cells of NocWT distributed across the focal plane. A
representative image from the validation dataset is shown in
Fig. la. Their high density and clarity make them suitable for
tasks like cell identification, enumeration, and segmentation.

Bright-field images provide information on cell morphology,
size, and spatial distribution (see Fig. 1b). However, artifacts
from debris, dirt, air bubbles, or residual organic substances
may introduce noise, appearing as dark regions in the images
(see Fig. 1c). These artifacts can cause false positives in cell
identification and segmentation, affecting analysis accuracy. A
detailed summary of the dataset is presented in Table 1.

B. Ground-truth annotation strategy

To ensure a reliable evaluation of computational methods,
we generate ground-truth data for both detection and seg-
mentation. The segmentation ground-truth is manually created
using ProCreate [22], which provides standard image edit-
ing tools. The annotation process begins with an automated
selection of cell boundaries (using the proposed algorithm),
followed by manual refinement to ensure accurate delineation
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(a) A representative image of the dataset

(b) Details of cell morphology (c) Artifacts

Fig. 1: Bright-field image of cells of Nannochloropsis oceanica
strain CCAP 849/10.

before exporting the final masks as binary images. For cell
detection and counting, the ground-truth is established by
analyzing and correcting the obtained results. ImageJ [23] is
used to systematically identify and assess false negatives and
false positives, which are relatively low.

Despite rigorous annotation procedures, human error re-
mains a challenge in GT generation. Manual segmentation is
influenced by the annotator’s expertise and the morphological
complexity of the structures. In cell detection and counting,
ambiguous elements resembling cells, as well as partial cells
along image borders, introduce uncertainty. Due to the labor-
intensive nature of annotation, ground-truth segmentation data
is generated for only a subset of the images. Table I provides
a summary of the total number of annotated images.

IV. METHODS

One of the key features of SAM is the ability to utilize visual
prompts—such as points, bounding boxes, or rough masks—to
guide the segmentation process. These prompts provide SAM
with contextual cues, allowing it to focus on specific objects or
regions within an image. In our approach, we leverage SAM
by using as prompts the cells previously segmented through
a classical image processing pipeline, as shown in Fig. 2. By
inputting these pre-segmented regions as guidance, we refine
and enhance SAM’s output, improving its ability to delineate
complex cell boundaries.

IMAGE
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Fig. 2: The proposed cell segmentation framework.

A. Pre-processing and traditional segmentation

To ensure robust cell analysis, the image pre-processing
pipeline addresses microscopy artifacts while preserving cel-
lular features. It begins with Gaussian blur to reduce noise,
followed by HSV conversion, utilizing the Saturation channel
to enhance boundaries. CLAHE [24] improves contrast, and a
Bilateral Filter prevents noise amplification. Otsu thresholding
[25] generates a binary mask, defining sure background and
foreground. Background is extracted via dilation, while a
Distance Transform refines the foreground by weighting pixels
based on proximity to the background. The unknown region,
obtained as their difference, serves as input for the Watershed
segmentation algorithm [26], [27] to delineate cell boundaries.

B. SAM prompting strategy

Cell coordinates for SAM prompts are extracted through
Watershed-based instance segmentation, identifying distinct
markers for each object. Minimal enclosing circles are com-
puted to define center coordinates and radii, with nested circles
filtered to retain the largest in overlapping sets. A dynamic
threshold excludes smaller circles, mitigating noise. Segmen-
tation inaccuracies in closely apposed cells are addressed
by flagging bottleneck-shaped objects for validation based
on foreground pixel proportion. Flagged candidates undergo
reprocessing with Watershed [27], refining separation through
adjusted sensitivity. This workflow optimizes segmentation by
eliminating redundancy, adapting thresholds, and addressing
errors, ensuring robust coordinate extraction for SAM.

Additionally, background points are identified to guide SAM
segmentation: the sure background mask from Watershed is
dilated using an elliptical kernel, expanding cell borders.
A grid of equidistant points is generated across the image,
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Comparison of loU across Different Approaches

Watershed SAM fully automatic SAM marks
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CellsAM

Fig. 3: Performance comparison of the different methods.

excluding those within the dilated mask. These background
points complete the input array, enhancing SAM’s segmenta-
tion precision. All segmentation results are obtained with SAM
(ViT-H), ensuring high-capacity feature extraction and robust
performance in delineating cell boundaries.

V. RESULTS

In this section, we present the segmentation performance
obtained using the classical Watershed algorithm and SAM
guided by pre-segmented regions from classical methods as
prompts. By comparing these methods with other state-of-the-
art techniques, such as fully automatic SAM, DeepCell, and
CellSAM, we evaluate the strengths and limitations of each ap-
proach in detecting and delineating NocWT cells. This analysis
highlights the impact of incorporating prior knowledge from
traditional segmentation techniques to enhance the accuracy
and reliability of deep learning-based segmentation.

Segmentation quality is assessed using the Intersection
over Union (IoU), which measures the overlap between the
predicted mask and the ground truth mask. In this study, IoU is
calculated globally, considering all segmented cells as a single
binary mask to ensure consistency across different methods.

A. Watershed algorithm

As shown in Fig. 3, the Watershed algorithm provides
inadequate segmentation results, with IoU values below 0.5.
This underperformance is due to the non-uniform cell surface,
with varying intensities that cause the algorithm to incorrectly
place the watershed barrier at intensity variations, leading
to incomplete segmentation. Post-processing techniques like
dilation or appropriate filtering could improve IoU, but they
risk distorting cell boundaries.

B. Marker-based SAM

While the Watershed algorithm does not achieve perfect cell
segmentation, it proves highly effective for individual cell de-
tection. This makes it a valuable prior, as these detections serve
as reliable prompts for guiding SAM, refining its segmentation
while preserving crucial cell structures. The performance of
these cell detections, evaluated against the ground truth, is

TABLE II: Cell detection performance.

Precision Recall F1-score
o o W o w 4
0.998 | 0.004 | 0.963 | 0.027 | 0.980 | 0.009

quantitatively assessed and reported in Table II, demonstrating
consistently high metrics (above 0.95) with low standard
deviation, indicating both accuracy and stability.

Initialized with these detected cell prompts, the marker-
based SAM approach offers substantially improved perfor-
mance compared to the Watershed method, as visualized in
Fig. 3. Leveraging the identified coordinates as prompts effec-
tively guides the segmentation process, enabling the system
to distinguish cells from the background with remarkable
precision. This targeted approach not only enhances accurate
cell boundary delineation but also minimizes the impact of
impurities and background noise.

C. Comparison with SoA

To further evaluate our approach, we compare its perfor-
mance with those of fully automatic SAM segmentation [9],
DeepCell [21], and CellSAM [12], as shown in Fig. 3.

The automatic SAM approach offers versatility, requiring
no user-provided prompts. However, without prior guidance,
it is more sensitive to noise, segmenting any distinguishable
element in the image, including the halos around cells. As a
result, the masks tend to be larger, incorporating artifacts and
reducing overall accuracy, as shown in Fig. 4a.

Results show that the SAM marker-based approach consis-
tently outperforms also other relevant benchmarks, such as
DeepCell [21], a deep-learning framework with pre-trained
models for single-cell segmentation, and CellSAM [12], a
SAM-based approach optimized for biomedical imaging. In
fact, both exhibit limitations, as they tend to miss some
cells while oversegmenting others due to sensitivity to halos,
ultimately resulting in less precise cell delineation compared
to our approach, as shown in Fig. 4b and Fig. 4c, respectively.

Among SAM variants, the marker-based method achieves
superior segmentation with significantly lower computational
costs. While automatic SAM requires about one minute per
image on a consumer-grade GPU, the marker-based method
delivers high-quality results in roughly 4 seconds, making it
more practical for large-scale analysis.

VI. CONCLUSION

This work describes a hybrid approach for automated
detection, counting, and segmentation of Nannochloropsis
Oceanica, Wild Type (NocWT) microalgae cells. Combining
classical image processing with deep learning, we leverage the
strengths of both. Traditional methods excel at detection and
counting but struggle with segmentation due to morphological
variations and overlapping cells. To address this, we guide the
Segment Anything Model (SAM) using pre-segmented regions
derived from classical methods, refining cell boundary delin-
eation. Comparisons with fully automatic SAM, DeepCell,
and CellSAM highlight the advantages of integrating prior
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(a) Fully automated SAM

(b) DeepCell

(c) CellSAM

(d) Our method

Fig. 4: Qualitative comparisons of results.

knowledge into Al-driven segmentation. Our marker-based
strategy optimizes both accuracy and efficiency, processing
images in just four seconds on a consumer-grade GPU, about
15 times faster than unassisted SAM. This hybrid approach
balances precision, interpretability, and speed, offering a scal-
able solution for high-throughput microalgae image analysis.
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