Bridging the Gap Between Saliency Prediction
and Image Quality Assessment

Kirillov Alexey*'

iAIRI, Moscow, Russia

Andrey Moskalenko**$
*Lomonosov Moscow State University
§MSU Institute for Artificial Intelligence

Dmitriy Vatolin*$
Yandex

{alexey .kirillov, andrey.moskalenko, dmitriy}@graphics .CS.msu.ru

Abstract—Over the past few years, deep neural models have
made considerable advances in image quality assessment (IQA).
However, the underlying reasons for their success remain unclear
due to the complex nature of deep neural networks. IQA aims
to describe how the human visual system (HVS) works and to
create its efficient approximations. On the other hand, Saliency
Prediction task aims to emulate HVS by determining areas of
visual interest. Thus, we believe that saliency plays a crucial role
in human perception.

In this work, we conduct an empirical study that re-
veals the relation between IQA and Saliency Prediction tasks,
demonstrating that the former incorporates knowledge of
the latter. Moreover, we introduce a novel SACID dataset
of saliency-aware compressed images and conduct a large-
scale comparison of classic and neural-based IQA meth-
ods. Supplementary code and data will be available at
https://huggingface.co/datasets/alexkkir/SACID.

Index Terms—Image Quality Assessment, Visual Saliency Pre-
diction, Explainable Al

I. INTRODUCTION

Image Quality Assessment (IQA) aims to measure image
quality aligned with human visual perception. Improving IQA
can greatly enhance user experience in tasks such as image
compression, restoration, editing, and generation.

Despite achieving high correlations with human judgments,
the internal workings of IQA models remain unclear. An im-
portant open question is whether IQA models implicitly adopt
properties of human vision, particularly visual saliency—the
human tendency to focus attention on certain image regions [,

]. Meanwhile, Saliency Prediction (SP) has advanced signif-
icantly, delivering accurate predictions of human attention.

In this work, we explore the connection of IQA and SP. Our
main contributions are as follows:

o We propose a methodology to extract saliency maps from
trained IQA models, which reveals that learning-based
IQA methods incorporate saliency in their predictions and
can even outperform saliency prediction baselines, such
as center-prior.

o We present a method for parameter-free dual-task training
strategy for IQA and Saliency Prediction, which reveals
that these tasks are connected and can be solved simul-
taneously without quality drops.

o« We conduct a subjective study with 1400+ assessors
to evaluate the effectiveness of existing IQA metrics
for non-uniform compressed content employing various
saliency-aware coding strategies.
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Fig. 1: Saliency and GradCAM identify important regions.
Upper row: saliency maps predicted by SOTA model TranSal-
Net [3]. Bottom row: GradCAM extracted from our IQA
model (Baseline-EfficientBO0).

II. RELATED WORK
A. Image Quality Assessment

IQA aims to measure the perceptual quality of an image by
assessing image artifacts and distortions. Most IQA techniques
can be categorized as Full-Reference (FR) or No-Reference
(NR), with the latter more relevant for real-world applica-
tions [4], where a reference is not available.

Early approaches relied on natural scene statistics (NSS) [5,

, 7, 8, 9] with hand-crafted features and regression models.
As deep learning evolved, neural network-based approaches
became popular, typically consisting of a convolutional or
transformer backbone with a regression head. HyperIQA [10]
proposed a multiscale feature, while MUSIQ [ 1] employed
multiscale inputs and a vision transformer backbone.

Some methods [12, 13] create paired models for both FR
and NR scenarios, such as TOPIQ, which uses features from
original, distorted, and difference images at each layer.

B. Saliency in Image Quality Assessment

Research indicates a connection between saliency and IQA
[12, , , , ]. Efforts to enhance IQA models by
incorporating saliency include [15, 18, 19, 20]. Early studies
[9] improved NSS-based metrics by reweighting error maps
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TABLE I: Performance comparison on SALICON [30] dataset.
GradCAM-extracted saliency maps from IQA models outper-
form center-prior baseline, but are surpassed by SOTA saliency
prediction methods. The best results are bold, the second-best
are underlined, and the third best are italics.

Type Method NSSt+ SIMtT CC?T KLDJ
Dummy Center Prior 0,582 0,534 0,541 0,784
Baseline-EfficientNet 0,604 0,584 0,637 0,700
Baseline-ResNet50 0,621 0,555 0,590 0,782

ﬁiﬂcﬁf TOPIQ [17] 0507 0552 0572 0,759
DBCNN [31] 0,579 0,566 0,590 0,707

CLIP-IQA+ [32] 0,584 0,550 0,589 0,741

MSINet [33] 0,612 0,767 0,891 0,252

SOTA SP TranSalNet [3] 0,613 0,776 0,903 0,258

based on saliency. SGDNet [ 18] introduced a separate head to
predict saliency and reweight features.

TranSLA [21] incorporates saliency as a query branch in
cross-attention, while HVS-5M [19] uses a pre-trained SP
model to reweight features. SCVC [22] aggregates patch
scores using Gaussian functions and saliency maps (SM).
LPIPS [23] performance can be enhanced by spatially
reweighting feature maps [12]. However, some studies [14]
report only slight improvement in VQA models from using
saliency, and our research suggests models already incorporate
saliency knowledge into their predictions.

C. Al Explainability

Neural networks, despite their high performance, remain a
black box. Methods have been developed to provide insight
into their internal operations. CAM [24] considers a simple
case of a CNN with a head consisting of a single linear layer
after global average pooling (GAP). GradCAM [25] extends
CAM to models with arbitrary heads, using gradients w.r.t. the
model’s predictions. Subsequent works [26, 27, 28] propose
heuristics for improving the method.

Some researchers have studied benchmarking explanation
maps. In [26], they suggest masking important image areas
and monitoring changes in model confidence. Work [29]
introduced a metric, area over the perturbation curve, as a
measure of explanation-map fidelity.

Several works address explainability in IQA. In [13], au-
thors showed that IQA models only require half of an image
to make accurate predictions. They divided each image into 12
square patches and examined predictions of the transformer-
based IQA model as they masked various combinations. They
found that using important regions preserves model quality,
while using trivial regions decreases it. We simplify this
approach and show that masking pixels based on saliency maps
or GradCAM yields comparable results.

III. EXPERIMENTS

A. Extracting Saliency from IQA models

We started our experiments by testing the hypothesis that
ground-truth saliency (e.g. from eye-tracker) correlates with

explanation GradCAM maps of IQA models, in other words,
if it is possible to extract an approximation for saliency
from a trained IQA model. In our experiments we used
TOPIQ [12], DBCNN [31] and CLIP-IQA [32]. We also
trained our simple baseline model, consisting of a backbone,
GAP pooling, and MLP head. We tested two backbones:
EfficientNet-BO [34] and ResNet-50 [35]. To build GradCAMs
we used HiResCAM [27] method, known to provably reflect
the locations the model used for computation. Additionally,
to improve the quality of maps and remove noise, we applied
smoothing through augmentations and SVD decompositions of
feature maps as recommended in [36]. Every image was passed
six times through the model with small rotations. Then feature
map from the last channel was channel-wise decomposed via
SVD-decomposition and the first main component was taken.

We used straightforward saliency baselines — Center Prior, a
Gaussian distribution that approximates the saliency averaged
over the dataset — and two State-of-the-Art saliency predic-
tion models [33, 3]. We evaluate the model quality based
on common saliency metrics — NSS, SIM, CC, and KLD
calculated on the validation split of SALICON dataset [30].
Before calculating metrics, we employed map transforms [37]
as a post-processing transformation.

Results are presented in Tab. I. GradCAM better predicts
saliency than center-prior, indicating that IQA models under-
stand saliency distribution and allow extracting such proxy SM
in a zero-shot mode.

B. Saliency Masking

Inspired by [13], we investigate the significance of individ-
ual image regions on image quality by masking them. The
primary aim was to determine which interpretation maps best
represent important areas of the image: saliency or GradCAM.
For each image, the corresponding explanation map was used,
with high values indicating important areas. Subsequently, all
pixels in the image whose values did not exceed the threshold
were masked.

Masking of different image portions was performed using
two strategies: Most Relevant First (MoRF) and Least Relevant
First (LeRF), as proposed in [29]. In MoRF, pixels with values
above the threshold were masked, preserving trivial regions.
Conversely, in LeRF, pixels with values below the threshold
were masked, preserving important regions. Perturbations,
such as filling with black color or ImageNet mean values, were
applied. Before thresholding the explanation maps, Gaussian
blur with a large kernel (approximately 101 pixels) and a small
sigma was applied to ensure the calculation of thresholds cor-
responding to all quantiles. Fig. 1 shows examples of images
whose regions are filled with black. For the experiment, images
from the KonlQ-10k dataset were used. The performance of
IQA models on masked images was calculated in terms of
Spearman’s Rank Order Correlation Coefficient (SROCC).

Fig. 2 presents the results. A comparison was also made to
the method from [13], referred to as “Halflmage”.

Masking important areas (MoRF) decreases image quality
more than masking trivial areas (LeRF). The same observation
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Fig. 2: Masking input images according to saliency and GradCAM maps with black (upper row) and ImageNet mean (bottom
row). We note a strong relation between the behavior of correlations when masking with saliency and GradCAM maps.

holds for GradCAM. Interestingly, masking with saliency
results in a larger performance gap between LeRF and MoRF
regions compared to Halflmage, even though the latter em-
ploys knowledge of pretrained IQA models. This finding
suggests that saliency maps effectively highlight regions that
are crucial for IQA models. Furthermore, it is noted that the
behavior of models when masked with GradCAM maps and
saliency exhibits significant similarity. This similarity can be
interpreted as an existing relationship between the attention of
IQA models and human visual attention.

C. Dual-Task Training

After discovering a close connection between IQA and
saliency prediction (SP), we decided to train a model on
both tasks simultaneously and determine whether we could
do so without decreasing performance. We implemented two
approaches to achieve this goal.

In the first approach, termed Baseline-Sal-Loss, we added a
small decoder to our baseline model. It consisted of a single
convolutional layer with a 1x1 kernel, followed by a sigmoid
activation function to integrate saliency loss into the model.

The second approach, called Baseline-GradCAM-Loss, uti-
lizes the GradCAM method as a secondary output, which we
incorporated into the model’s loss function to enhance saliency
prediction. The GradCAM calculation is as follows:

8 C
Lésacan = ReLU (Z azA’“> g = % S o
k ig v

where y¢ is model prediction and AF is k-th channel of
features from last layer. As IQA model has only one output,
c equals 1. To ensure differentiability, we detached «f from
the computational graph, calculating gradients exclusively over
the channel maps. This modification is integral to the Baseline-
GradCAM-Loss model.

We used 80% of the KonlQ-10k dataset for training and
the remaining 20% for testing. Additionally, we evaluated

our model on the CLIVE, SALICON, and CAT2000 datasets.
Since KonlQ-10k does not provide saliency maps, we gen-
erated proxy SM using the MSINet model. Each experiment
was repeated 10 times to ensure consistency, with the averaged
results presented in Table 1.

We compared the dual-task models with the baseline model
trained solely on IQA using the saliency extraction technique,
Center Prior, and other State-of-the-Art saliency models. Our
findings reveal that both dual-task approaches allow for ef-
fective training on IQA and SP tasks concurrently. These
approaches maintain the performance of IQA models while
significantly improving the results for SP.

D. Non-uniform-Compression Dataset

We hypothesized that the existing IQA datasets lack suf-
ficient complexity (due to almost-uniform compression and
degradation), hindering the ability to detect emerging capa-
bilities in IQA models, utilizing saliency. Consequently, we
constructed a new dataset of high-quality images compressed
with nonuniform codecs called Saliency-Aware Compressed
Images Dataset (SACID). Specifically, we employed the cus-
tom codec [41] and sourced 50 images from the CLIC-2021
dataset.

We generated saliency maps for each image using
the TranSalNet model and applied compression with
four presets: one without saliency consideration and
three that incorporate saliency. For each preset, we se-
lected three bitrates, yielding bit-per-pixel (bpp) val-
ues of 0.08, 0.12, and 0.16 — similar to those in
the CLIC-2021 challenge. Our saliency-aware compression
used settings of (saliency_s0,saliency_bitrate) €
[(75,80), (60, 80), (60,40)], creating a diverse set of images.
We generated a total of 720 nonuniformly compressed images
for evaluation.

To obtain subjective scores, we conducted pairwise com-
parisons using over 1,400 assessors from the crowdsourcing
platform Subjectify.us. Assessors were presented with
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TABLE II: Simultaneous learning of two tasks.

IQA Saliency Prediction
Method KonlQ-10k [38] CLIVE [39] SALICON [30] CAT2000 [40]
SROCC + PLCC1 SROCCt PLCCt NSSt SIMt+ CC+ KLDJ NSS+ SIM{+ CCt KLDJ
Center Prior - - - - 0.578 0.536 0.544  0.779 0303 0.599 0771  0.672
Baseline 0913 0.931 0.862 0.848 0.604 0.584 0.637 0.700 0.308 0.613 0.781 0.585
Baseline-Sal-Loss 0.914 0.930 0.845 0.839 0.618 0.688 0.803  0.429 0372  0.665 0.818 0.433
Baseline-GradCAM-Loss 0.912 0.931 0.852 0.840 0.615 0.703 0.825 0.396 0.382 0.676 0.826  0.403
MSINet [33] - - - - 0.612 0.767 0.891  0.252 0.370  0.664 0.820 0.421
TranSalNet [3] - - - - 0.613 0.776  0.903  0.258 0.369 0.670 0.829  0.407
3 verification and 25 random pairs of images with different TABLE III: Quantitative results on SACID.
p1f:ture qualities and were a§ked t‘he follo“{lng questlon:. You Type  Method SROCC 1 PLCC 1 FracCP 1
will be shown sequential pairs of images with different picture
lity. F h . lect the i that has th t MS-SSIM [6] 0.807 0.849 0.507
quality. For each pair, select the image that has the mos BRISQUE [4] 0817 0.833 0.572
acceptable quality for viewing, or note that the quality in this Nss  PSNR 0.822 0.858 0.505
pair is almost the same”. based E%LN% [] 1 g-gig ggg? g-ggé
We evaluated alll models from the PYIQA toolbox [42], EW-SSIM [0] 0850 0867 0.636
saliency-aware versions of PSNR and SSIM (EW-PSNR and EW-PSNR [9] 0.875 0.893 0.678
EW-SSIM [9]), our model variants (Baseline, Baseline-Sal- AHIQ [43] 0.789 0.817 0.546
Loss, and Baseline-GradCAM-Loss), and salient deep-learning LPIPS [23] 0.818 0.854 0.512
models (SGDNet [18], etc.). Models were compared in terms FR ,l;lgggF[R][ | %883336 % 822;
of SROCC, PLCC and fraction of concprdant pairs (Fr.acCP). DISTS [45] 0.871 0.904 0.589
To calculat.e FracCP, groups corresponding to d%fferent images MANIQA [10] 0752 0773 0564
were considered, and in each group, the fraction of ordered TReS [47] 0.765 0.800 0.559
pairs was counted. The resulting numbers were averaged HyperlQA [10] 0.784 0.802 0.562
Chwoomiin om0 pis s
Results are listed in Tab. III. Notably, salient versions NR  SGDNet-Output [15] 0.854 0.879 0.687
of PSNR and SSIM remarkably outperformed the originals. Baseline-GradCAM-Loss ~ 0.863 0.865 0.624
- - L ) CLIP-IQA+ [32] 0.869 0.896 0.598
But Baseline, Baseline Sal. L9ss, and Basehnfe GrafiCAM Baseline 0.871 0.881 0.609
Loss models demonstrated similar performance, implying that TOPIQ-NR [12] 0.876 0.886 0.629
saliency fails to enhance deep-learning metrics significantly. Baseline-Sal-Loss 0.880 0.886 0.630
. . . . MUSIQ [11] 0.888 0.899 0.662
We attribute this to the reliance of methods on conventional DBCNN [31] 0.901 0.917 0.666

datasets, where most distortions are uniform, despite being
trained with saliency. Thus, IQA models are limited by current
compression standards and may show lower correlations in the
non-uniform compression domain.

IV. DISCUSSION

Our experiments reveal a clear link between saliency predic-
tion and IQA. Using GradCAM to extract saliency maps from
IQA models shows they implicitly capture human attention
better than simple baselines like center-prior. Our dual-task
training approach demonstrates that explicitly using saliency
maintains or slightly improves IQA performance without
adding model complexity.

Masking experiments confirm the significance of salient
image regions, as masking them significantly reduces IQA
scores. However, directly incorporating saliency into neural
IQA methods showed limited gains on our non-uniform com-
pression dataset (SACID). This limitation likely stems from
existing IQA datasets being dominated by uniform distortions,
restricting models’ ability to leverage saliency cues effectively.
Therefore, building datasets with diverse, saliency-driven, and
non-uniform distortions is important for further research.

V. CONCLUSION

This study examined the relationship between saliency pre-
diction and image-quality assessment. We propose a technique
for the extraction of saliency maps from IQA models and
empirically demonstrate their reliance on salient regions. Ad-
ditionally, we propose a parameter-free dual-task learning ap-
proach without sacrificing quality. Finally, we curated a dataset
of non-uniformly compressed images and performed a large-
scale comparison. We conclude that saliency can remarkably
improve NSS-based methods, while learning-based methods
face slight improvement since they already take saliency priors
into account during conventional training.
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