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Abstract—We address single depth map super-resolution as
an inverse problem and rely on a graph-based representation
of depth maps to explore the use of the Laplacian matrix as
a regularizer. The Laplacian matrix is well known in graph
theory for encoding important properties of graph nodes and
edges. We solve the corresponding optimization problem with
the Alternating Direction Method of Multipliers (ADMM), an
algorithm that has been widely used in recent years for solving
complex problems by splitting them into smaller and simpler sub-
problems. By using the graph Laplacian as a regularizer within
the ADMM algorithm, we promote smoothness and preserve
structural details of the considered depth map. We showcase
a comprehensive formulation of the ADMM algorithm and
how the Laplacian matrix is integrated. Results show that our
approach outperforms existing optimization-based solutions and
ADMM-based methods that use machine learning techniques for
regularization (Plug and Play priors).

Index Terms—depth maps, super-resolution, ADMM, Lapla-
cian matrix

I. INTRODUCTION

Depth map super-resolution (SR) aims to reconstruct high-
resolution (HR) depth maps from their low-resolution (LR)
counterparts. Depth maps play a crucial role in various ap-
plications, such as autonomous driving [1] and 3D recon-
struction [2]. However, due to hardware limitations and sensor
noise, captured depth maps often suffer from low resolution
and artifacts, posing serious issues for various 3D applications.
In general, depth cameras are equipped with an additional
RGB sensor that can capture color images with a resolution
higher than that of depth maps. Most of the existing works
apply guided depth map SR, that is, they employ the HR
color counterpart as guidance for the SR task. Nevertheless,
in low-light conditions the guidance image is usually noisy
and may mislead the depth restoration algorithm, making the
color assisted approaches less general [3], [4]. Over the years,
many approaches have been proposed to enhance depth map
resolution, ranging from classical interpolation methods to
deep learning-based techniques [5]. Nevertheless, achieving an
optimal balance between computational efficiency and fidelity
remains an open challenge.

Different from color images, depth maps do not contain
rich texture information, but they are piecewise smooth, that
is, they contain smooth areas separated by sharp boundaries.
Unlike natural image SR, where perceptual quality is a primary
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concern, depth map SR must preserve geometric accuracy and
structural consistency to ensure reliable 3D information.

Similar to color image SR, analytical approaches for depth
map SR address the estimation of the HR depth map from the
observed LR counterpart as an inverse problem and introduce
various priors [5]. The corresponding optimization methods
apply different regularization techniques. Total variation (TV)
regularization aims to minimize the gradient magnitude to
enforce smoothness. Although the TV constraint helps to
distinguish the edge and the noise, it tends to generate the
“staircasing artifacts” for the smooth region [5]. Recent studies
have shown the powerful capability of the graph Laplacian to
deal with the piecewise smooth signals and several works have
used it to exploit the smoothness of the depth map [6]-[10].

Data driven solutions are an alternative approach to address
SR tasks and include dictionary learning and deep learning
methods. Dictionary learning methods rely on sparsity assump-
tions and try to learn the correlation between the LR and the
HR space from a set of training image pairs [4], [11]. On the
other hand, deep learning (DL) methods rely on large amounts
of data to find a direct mapping from the LR observations to
the HR ground truth. Pioneer DL designs for general image
SR include SRCNN [12], which demonstrated the potential
of CNN data-driven approaches, ESRGAN [13], which relied
on generative adversarial neural networks, RESNET [14] with
its variants (RESNET50, RESNET101 etc), which introduced
residual learning, and U-net [15], which showed that skip
connections are useful for recovering fine details. State-of-the-
art DL models for depth map SR include a multi-scale fusion
model proposed in [16] where the multi-scale guided features
are obtained by a VGG-like neural network, a multi-modal
attention-based fusion model [17], a high-frequency guidance
network that employs the octave convolution [18], and the
model presented in [19] which uses a guidance image only at
the training stage.

Despite their impressive results, learning-based methods
require large computational resources and datasets, which
can limit their applicability in real-world scenarios. Another
significant drawback is their lack of interpretability and ex-
plainability, i.e., we do not know what the DL model has
learned. Model-based deep learning designs are an alternative
approach that tries to bridge the gap between deep learning
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and model-based solutions [10], [20], [21].

In this paper, we follow a model-based approach for the
solution of single depth map SR which also leverages the
representation power of deep neural networks. Specifically,
we consider a graphical representation of depth maps and
address the depth map SR as an inverse problem. In order
to incorporate prior knowledge, promote smoothness and pre-
serve the structural integrity of the depth maps, we propose
a regularization of the problem at a feature level. We extract
latent features from LR depth maps using a pretrained neural
network model, and apply graph regularization by computing a
graph Laplacian using the extracted features. The estimated SR
depth maps are obtained as a solution to the graph-regularized
problem using the Alternating Direction Method of Multipliers
(ADMM) algorithm. Although the proposed approach benefits
from deep learning representation models, it does not use any
kind of training. Experimental results demonstrate the superior
performance of the proposed approach against single-modal
(non-guided) and guided SR methods.

The remainder of the paper is organized as follows: Section
IT reviews the related work. Section III presents the mathe-
matical formulation and the details of the proposed algorithm.
Section IV provides the experimental setup, the datasets, the
experiments and the results of the algorithm. Finally, Section
V concludes the paper.

II. RELATED WORK

In graph-based representations, we assume that the signal
is represented in the form of a weighted undirected graph G
and similarities in the signal are expressed by the edges &£
and the respective weights encoded in the adjacency matrix
W. Graph-based representations consist a powerful tool in
computer vision as they capture complex image structures
and relationships between pixels [9], [22]. In image process-
ing, typically, the nodes of the graph correspond to image
pixels and the graph Laplacian is used to express similarity
constraints between the pixels. Spectral graph theory has
been leveraged to design effective regularization strategies
that enhance feature preservation and structural coherence in
reconstructed images. Graph-based regularization has been
incorporated both in model-based approaches [22] and deep
learning designs [9], [10].

Concerning depth map reconstruction, a graph Laplacian
model exploiting prior information about the depth image and
the corresponding color image was formulated in [6]. Instead
of constructing the graph with the pixels, the authors of [7]
propose to construct the graph with a group of similar patches.
In [8] the edge weight distribution of an area with sharp edges
is considered to be a bimodal distribution. A reweighted graph
Laplacian regularizer is proposed to preserve sharp edges and
promote the bimodal distribution of edge weights. In [10] the
graph Laplacian is learned from the data and the regularized
problem is solved by a DL design in an end-to-end manner.

Building upon these foundations, we consider a graph-
based representation of the depth maps and compute the graph
Laplacian matrix using latent features. Following an approach

similar to [10], we obtain the latent representations from a
deep neural network model. Unlike [10], where the latent
features and the inverse mapping are learned from the data in
an end-to-end learning framework, we use a pretrained model
to extract the features and estimate the HR depth map by
employing the ADMM algorithm to solve the corresponding
graph-regularized optimization problem. We compare our re-
sults with state-of-the-art ADMM-based methods performing
single depth map SR with other types of regularization [23],
[24]. We also compare with state-of-the art guided depth
map SR methods that use a neural network as a graph
regularizer [10]. Experiments show that our method yields the
best results in terms of root mean squared error (RMSE) and
visual quality.

III. DEPTH MAP SUPER-RESOLUTION USING THE ADMM
ALGORITHM AND GRAPH-BASED REGULARIZATION

A. Depth map super-resolution and graph regularization

Similar to image SR, depth map SR is an inverse imaging
problem [5] and can be formulated as follows:

y =Ax+e, (1)

where y € RM™M2 ig the vectorized form of the observed
N; x N, depth map (LR), x € RSNz 5 the unknown
HR depth map, assuming upscaling by a factor S, A €
RM1N2xS*N1Nz g the degradation matrix, and e is the additive
noise. An optimization approach for the solution of (1) can be
formulated as:

% = argmin [g(x) + h(x)], @)

where g(x) = ||y — Ax||% is the fidelity term that enforces
consistency with the observed data, and h(x) = AR(x) is
a regularization term, with R(x) a regularizer weighted by
A>0.

In order to promote smooth upscaling and also preserve the
structural information, we consider a graphical representation
of a depth map and propose a regularizer that encodes the
spatial relationships between pixels by employing the graph
Laplacian matrix. Assuming that each pixel in the depth map
corresponds to a node in a graph and connections between
neighboring pixels are represented by edges, the graph Lapla-
cian matrix is given by

L=D-W, 3)

where W is the adjacency matrix of the graph and D is the
degree matrix. Therefore, we define a regularizer of the form

R(x) = x"Lx. “4)

Our approach considers the construction of a Laplacian
matrix based on the similarity between pixels on a latent space.
Specifically, we deploy a deep feature extractor (see Fig. 1) to
obtain features for every pixel of the depth map and encode the
similarity between features using a Gaussian kernel. For each
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Deep Feature Extractor

Fig. 1.

Laplacian matrix
construction

Features

Flowchart presenting the process of the Laplacian matrix construction. We pass the depth map into the deep feature extractor and construct the

Laplacian matrix from the obtained features instead of traditionally using the depth map pixels.

pixel in the depth map, we consider its 4-connected neighbors,
and the weights of the graph edges are determined as follows:

f. —f; 2
Wij = exp (_ || 1 2.]”2) ) (5)

g

where f; and f; are the feature vectors with size equal to
classes, and o is a scaling parameter to control the sensitivity
of the similarity to feature differences. For non-neighboring
pixels we set W;; = 0. As a deep feature extractor we
employ a pretrained neural network that uses U-net [15] with
ResNet50 encoder weights. We consider a bicubic interpolated
depth map as input to the deep feature extractor, while the
output features have dimensions of classes x SNy X SNa,
with classes = 64. After computing the adjacency matrix,
the degree matrix D is calculated as:

D;; = ZVVU (6)
J

Finally the Laplacian matrix is obtained from (3).

B. ADMM-based optimization

Employing ADMM for the solution of (2) results in Al-
gorithm 1 [25]. We focus on Step 4 which involves the
regularization term. The key challenge in this step is the

Algorithm 1 ADMM algorithm

1: Input: u® =0, x% and p >0
2: for k=1,2,...,t do

3 z’; — proxpg(x’;C 1 fkli’i b
4: x" < prox ,,(z" +u"" ")

5 u? « uFl 4 (28 - 2F)

6: end for

7: Return: x!

calculation of the proximal operator
. 1
prox,, (v) = argmin{ph(x) + 3 [x = v[3}, (D

which is not straightforward and requires careful treatment
due to the graph Laplacian L. We minimize (7) by setting the
gradient to zero. Then, the calculation of the proximal operator
induces to the solution of a quadratic minimization problem,
which can be reformulated as a linear system:

(pI +2XL)x = pv, 8)

where p is the penalty parameter for the ADMM algorithm and
I is the identity matrix with shape SZN; Ny x S2N;Ny. This

is a linear system of equations that can be efficiently solved
using modern numerical methods, such as conjugate gradient
descent. The matrix (pI +2AL) is sparse, which makes these
methods computationally feasible even for large-scale depth
map SR tasks.

Our method integrates graph-based regularization directly
into the ADMM framework and does not rely on neural
network training techniques; therefore, it requires much fewer
computations compared to learning based approaches and is
significantly more time efficient. Moreover, we do not use
complementary information from a guided color HR image;
we only use a single depth map as input.

IV. RESULTS AND EVALUATION

In this section, we evaluate the performance of the proposed
framework for depth map SR that uses the Laplacian matrix
as a regularizer and the ADMM algorithm for the solution of
the corresponding optimization problem.

A. Experimental setup

We conduct experiments on two widely used depth map
datasets, namely, DIML and NYUv2. DIML is a dataset which
contains both indoor and outdoor real-world depth maps; we
focus on the indoor depth maps. NYUv2 also contains indoor
depth maps captured from RGB-D sensors.

For our experiments, we use depth map patches of size
256 x 256. We also rescale the input and output depth maps
in the range [0,1]. The pretrained model for extracting the
features from the depth map input is a U-Net with encoder
weights from ResNet50 and classes = 64. For x4 upsample,
the parameters of the proposed ADMM method are set as
follows: A = 1.61, p = 0.11 and ¢ = 2.71. For the X8
upsample, we use A = 1.01, p = 0.11 and ¢ = 3.21.
These parameters were selected through tuning on a validation
set. Specifically, we performed a grid search and evaluated
performance using RMSE. The chosen values correspond to
those that achieved the best performance on the validation set.
We run the algorithm for a total of 15 iterations.

We use the Segmentation Models PyTorch library to obtain
the features from U-Net, a library with pretrained neural
networks for image segmentation based on PyTorch. For the
code implementation, we used the Scientific Computational
Imaging Code (SCICO) [27], a powerful open-source software
framework designed for solving imaging and inverse problems
using state-of-the-art computational algorithms. The hardware
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TABLE I
COMPARISON OF METHODS ON NYUV2 AND DIML DATASETS IN TERMS OF RMSE

Proposed | DnCNN-ADMM [26] | TV-ADMM [23] | BM3D-ADMM [24] | de Lutio et al. [10]
x4 NYUv2 0.0154 0.0188 0.0232 0.0273 0.0203
x8 NYUv2 0.0265 0.0338 0.0413 0.0666 0.0277
x4 DIML 0.0152 0.0161 0.0212 0.0242 0.0127
x8 DIML 0.0258 0.0303 0.0393 0.0617 0.0187

setup we used is cpu Intel i3 12100, 16 GB ram and MSI
Geforce RTX 4060 graphics card.

B. Compared methods and results

To assess the effectiveness of our method, we compare it
against state-of-the-art ADMM-based methods that use differ-
ent regularizers. Specifically, we compare it with Plug and Play
(PnP) methods like DnCNN-ADMM [26], which is a method
integrating deep learning within ADMM, using the DnCNN
denoiser for regularization. We also compare it with BM3D-
ADMM [24], which leverages non-local self-similarities to
remove noise and enhance textures, and TV-ADMM [23],
which enforces smoothness in images by using total variation.
We also compare against the guided depth map SR method
presented in [10], which applies graph-based regularization
using a deep learning framework. For visual comparison, we
also include results from bicubic upsampling.

The metric we use to evaluate the performance of our
method is the average root mean squared error (RMSE). The
experiments involved 5030 samples from the DIML dataset
and 600 samples from the NYUv2. Table I presents average
results for x4 and x8 upsampling factors. As can be seen,
the results indicate that our method outperforms all the single
modal ADMM-based methods used as a baseline. On the
NYUv2 dataset, it also outperforms the state-of-the-art DL
method presented in [10] which employs a guidance HR color
image. Since our method achieves better results than [10],
it follows that it also outperforms all other methods used
for comparison in [10], that is, DKN [28], FDKN [28],
and FDSR [18]. In summary, on the NYUv2 dataset, our
method achieves the lowest RMSE, outperforming all the other
methods, while on the DIML dataset, our method performs
slightly worse than [10] by a small margin in RMSE.

Note that our method does not include any kind of training,
therefore, it has a lower overall computational cost. On the
other hand, compared to the other ADMM variants our method
has a slightly higher per-image processing time due to the
computation of the Laplacian matrix.

While the numerical results provide an objective measure
of performance, the visual quality is also a significant aspect
for depth map SR. In Figure 2, we present the reconstructed
depth maps for x4 and x8 upsampling factors and different
methods. Specifically, we present (a) the HR color image,
(b) the reference HR depth map patch, (c) the corresponding
LR patch, and the reconstructed HR depth maps obtained
with (d) bicubic interpolation, (¢) BM3D-ADMM [24], (f) the
method of de Lutio et al. [10], (g0 DnCNN-ADMM [26],
(h) TV-ADMM [23], and (i) our method.

As can be seen, our method demonstrates sharper edge
preservation and better depth consistency in structured re-
gions and object boundaries. We observe that the TV-ADMM
method produces overly smoothed and blurry depth maps that
lose lots of information of depth and also quality. BM3D and
DnCNN produce better results compared to TV-ADMM but
they also have the same problem, that is, the depth maps
are smoother than expected and they do not have sufficient
details. We also observe that BM3D tends to introduce residual
noise in texture-heavy regions. The method of De Lutio et
al. [10] which uses a guidance HR image outperforms the other
baseline methods, likely due to the additional learned weights
enhancing depth variations. However, our method reconstructs
the image with finer details and fewer artifacts, and provides
a good balance between sharpness and smoothness.

V. CONCLUSIONS

In this work, we addressed single depth map SR as an
inverse problem and proposed a graph-based regularization
that uses latent representations of the considered depth maps.
Our method relies on a pretrained deep neural network model
to estimate the regularizer and uses a mathematical formula-
tion to solve the inverse problem by employing the ADMM
algorithm. Therefore, our approach combines the advantages
of both data-driven and model-based methods. Experimental
results have shown that the proposed method outperforms
other ADMM-based solutions as well as deep learning-based
guided SR approaches.
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