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Abstract—Since sound causes minute vibrations in objects
surrounding the sound source, Visual Vibrometer allows us to
recover the sound from remote point by optically measuring the
vibration on the object’s surface. For that system, Laser Doppler
Velocimeters (LDVs) and high-speed cameras are commonly
used, but there are issues in terms of equipment cost and data
efficiency. Therefore, a technique has recently emerged to use
event-based cameras in place of such equipment. Event-based
cameras record only changes in brightness, independently, at
each pixel, and its advantages such as high temporal resolution,
high data efficiency, and simple device structure make it easier
to measure. However, the technique is highly dependent on the
object’s surface characteristics, so the measurement conditions
can prove difficult to realize. In this paper, we propose a new
measurement system that observes changes in laser speckles
caused by vibration using an event-based camera to achieve more
robust measurement conditions, and a method for recovering
sound from the event signals. The proposed sound recovery
algorithm recovers the audio signal by noise reduction, sign
assignment, and integration, assuming that the number of events
produced by speckle pattern shift and detected at each time
is closely related to the absolute value of the vibration speed.
This method is very simple yet effective, and its performance is
demonstrated by experiments in real environments.

Index Terms—remote sound acquisition, visual acoustics,
event-based camera, laser speckle

I. INTRODUCTION

Sound is a fluctuation of pressure in the atmosphere, and
when it hits an object, it exerts a force that causes the
object’s surface to deform as determined by its own vibration
mode. These vibrations are usually invisible to the human eye
because the spatial fluctuations are so small, but they contain
enough information that the sound can be recovered.

A Visual Vibrometer [1]–[8] is a system that uses optical
equipment to measure the minute vibrations present on the
surface of an object; it is used for measuring the physical
properties of materials [4], detecting abnormalities in equip-
ment [6], and so on. Using this system, it is possible to acquire
vibration on the surface of an object from a remote point and
recover the sound at that location. Sound recovery using visual
information is superior to conventional microphones in terms
of attenuation and directivity, and the expectation is that it
will be used in important applications such as surveillance and
security. These require measurement devices with high spatial
and temporal resolution, and for this reason, Laser Doppler
Velocimeters (LDVs) and high-speed cameras are used, but
issues remain regarding the cost of the devices and how to
process the large amounts of data acquired.

Event-based cameras [9] are unique imaging devices de-
signed to mimic the retina of living organisms; they record
only changes in brightness, independently, at each pixel. Since
these sensors output data only from pixels that experience
changes in brightness, even when imaging at extremely high
spatial and temporal resolutions, the data stream will be very
sparse. Frame cameras suffer from a paucity of light per
pixel if the spatial resolution is increased, which increases the
exposure time to compensate, so the temporal resolution will
decrease. With event cameras, however, there is no such trade-
off, because even if the quantity of light per pixel is low, the
detection sensitivity can be sufficiently lowered to maintain
event detection accuracy. As a result, it is possible to acquire
high-frequency data that satisfies the Nyquist rate of audible
sound with a higher spatial resolution than is possible with
high-speed cameras. In addition, because device structure is
simple and compact, it is possible to perform measurements
more simply than allowed by conventional devices.

However, if the sound level is low or the frequency is high,
the vibration of the object’s surface becomes so minute that
even event cameras may fail to capture the surface vibration. In
such cases, laser speckle contrast imaging (LSCI) [10]–[12] is
useful. Speckle is a phenomenon in which a noise-like pattern
is produced by the interference of scattered light when a rough
surface is irradiated by coherent light. Since speckle patterns
are very sensitive to deformation of the irradiated surface, they
support high-resolution measurements in the medical [10] and
industrial [12] fields.

In this paper, we propose a new measurement system that
observes changes in laser speckle caused by vibration using
an event-based camera to achieve more robust measurements,
and a method for recovering sound from the event signals.
The proposed sound recovery algorithm recovers the audio
signal by noise reduction, sign assignment, and integration;
its assumption is that the number of events produced by
speckle pattern shift and detected at each time is closely related
to the absolute value of the vibration speed. Our proposal
allows high-frequency sound to be captured with inexpensive
equipment, and it achieves sufficient performance for practical
use. Finally, we demonstrate the performance of the proposed
system through experiments in a real environment using a bag
of chips and a speaker.

A. Related work

In recent years, there has been extensive research into
using imaging devices for remote sound recovery. The Visual
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Microphone (VM) [3], a representative work in this field, uses
a high-speed camera to recover sound in a completely passive
manner. With this method, the performance of sound recovery
with high-speed camera depends on whether its temporal
resolution meets the required sampling rate for the sound
frequency and if its spatial resolution is high enough to capture
the vibration’s magnitude. Therefore, this method demands a
camera with very high performance, and a carefully selected
lens; its measurement conditions are rather restrictive. In addi-
tion, for higher performance, it is necessary to process a large
amount of data, making the computation time impractically
long. A simple alternative method has been proposed that uses
a conventional video camera with a CMOS sensor and a rolling
shutter. This method has improved temporal resolution as its
rolling shutter captures data at slightly different times from
each line of the sensor. However, it is necessary to obtain a
reference image of the object in a stable state in advance, or
to precisely align the direction of the edge of the object with
the direction of the sensor row.

Sheinin et al. [7] designed a new imaging system that
combines a rolling shutter camera with a global shutter camera
and a beamsplitter; this combination allows the simultaneous
measurement of the reference image of the object as well as
the surface fluctuations. In addition, as laser speckle allows the
capture of even minute vibrations at low spatial resolutions,
the restrictions on lenses are greatly relaxed. Although the
measurement target is limited to the laser’s irradiation point,
multiple lasers and the division of the image sensor by using
a cylindrical lens make it possible to perform multi-point
measurements. The complexity of the imaging system is a
limitation of this method.

The Event-Based Visual Microphone (EBVM) [8] uses
an event-based camera to map the event signals from the
specular reflection from an object to the zero-crossings of the
sound signal and recover the sound by projection onto convex
sets (POCS) with the requirements being zero-crossing and
Fourier support. This method can detect minute vibrations by
detecting changes in specular reflection even at low spatial
resolution, but its feasibility strongly depends on the surface
conditions. Moreover, although the sound recovery algorithm
based on zero-crossing can estimate the relative intensity of
each frequency from short-time signals, it cannot estimate the
absolute intensity, so the loudness of the entire signal is not
guaranteed.

In this paper, we aim to achieve a simple device structure,
object-independent performance, and low computation cost by
using an event-based camera and laser speckle.

II. BACKGROUND

A. Event-based Camera

Event-based cameras detect changes in brightness at each
pixel and output them as event signals. Each event is repre-
sented as follows.

e = (x, p, t) (1)

where x = [xx, xy] ∈ Z2 are the coordinates of the pixel
at which the event occurred, p ∈ {−1, 1} is the logarithmic
brightness gradient, called polarity, and t is the timestamp.

For convenience, we denote a set of events E within a given
spatial area X using the following formula.

E = {e(x1, p1, t1), e(x2, p2, t2), ..., e(xn, pn, tn)) | x ∈ X}
(2)

The temporal resolution of event cameras is on the scale
of microseconds, which satisfies the Nyquist rate of human
audible range. Since the pixel values are output independently,
the data efficiency is much higher and the power consumption
is lower than this possible with a high-speed camera that
outputs all pixels frame-by-frame. The device structure of
event-based cameras is similar to that of conventional cameras,
except for the image sensor, which is small and lightweight.

B. Speckle Pattern Shift

Fig. 1: Speckle pattern shift. When a surface is illuminated
by coherent light from a laser, light interference generates
speckle. When imaging with a strongly defocused camera (the
focal plane is positioned far from the surface), changes in the
speckle caused by surface deformations can be observed as
shifts on the sensor plane.

When coherent light from a laser is irradiated onto an
object with a rough surface, it causes scattering within a small
irradiated spot. These lights scattered on the surface and reach
the sensor with difference phases due to the path differences;
they interfere with each other to form a random spatial pattern
called speckle pattern. Deformation of the scattering surface
within the spot causes a random change in the phases of the
scattered lights, resulting in a significant change in the speckle
pattern. Due to this characteristic, laser speckle is often used
to measure minute changes in objects.

Although the speckle pattern changes depending on the
scattering surface and camera conditions [13], it has been
shown that if the camera’s focal plane is far from the surface,
i.e., strongly defocused, the speckle pattern is not affected
by changes in the position of the scattering surface, only
by changes in the tilt (Fig.1) [14]. Under this condition, the
speckle pattern simply shifts on the sensor plane depending on
the change in the tilt of the scattering surface. The distance
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of the speckle pattern shift d(t) is calculated by the following
equation.

d(t) =
Z tanα(t)

M
' Zα(t)

M
(3)

where Z is the distance from the scattering surface to the
focal plane, α(t) is the tilt of the scattering surface, and M is
the inverse of the magnification of the imaging system. There
is a linear relationship between the amount of shift of the
speckle pattern and the tilt of the scattering surface. When
the target vibrates, the speckle pattern also vibrates linearly
on the sensor plane. This implies that it may be possible to
recover information such as the amplitude and frequency of
the vibration by analyzing the shift of the speckle pattern.

III. METHODS

As shown in Sec. II-B, the vibration information can be
recovered by tracking the speckle pattern captured by the
sensor. For this, feature point tracking by optical flow is often
used. Although computing methods for optical flow in event
signals have been actively researched in recent years [15], [16],
it is difficult to use them because the amount of movement is
spatially minute and temporally large compared to the moving
scenes assumed for in-vehicle cameras and drones.

Therefore, we propose a vibration estimation algorithm
based on an analytical approach using the number of event
occurrences. For one frame, the total number of events that
occur when a pattern moves at a certain speed on a sensor is
closely related to the pattern’s speed. In this paper, the number
of events is treated as the unsigned speed. Let N(t′) be the
number of events, it can be calculated by following formula.

N(t′) = N(k∆t) =
∑
ti∈E

I(ti, k)

I(ti, k) =

{
1 if k∆t ≤ ti < (k + 1)∆t

0 otherwise

(4)

where ∆t is the count interval and k is a sampling index, so
t′ = k∆t is a sampling time.

If v(t) is the velocity of speckle pattern shift, the following
equation holds.

d

dt
d(t) = v(t) (5)

Since the number of events is related to the pattern’s speed,
the following relationship holds using Eq. (4) and (5).

|v(t′)| ∝ N(t′) (6)

d(t) ∝
∫
sign(v(t′))N(t′) (7)

where sign(·) is the sign function.
From Eq. (7), if the sign of v(t′) is determined, the vibration

information can be estimated. The sign of velocity cannot be
estimated from unsigned speed, but if we assume that the
motion is generated by simple oscillation, we can consider
that the sign of velocity will reverse at the point where the
speed becomes zero. Because of factors such as the sampling
rate, it is not always possible to record the moment when

the speed becomes zero, so we estimate the timing at which
the direction of motion will reverse by relaxation to the local
minimum point.

This is a simple idea, but our preliminary experiment
showed it can be successfully applied to realistic data. For
verification, we simulated signed and unsigned time series
data of the vibration speed for three audio sources: Chirp
(200-2,000Hz), MIDI (”Mary had a little lamb” from [3]),
and Speech (”Mary had a little lamb ...” from [3]). Then, we
looked at all the points where the unsigned signal took its
local minimum value, and all the points where the sign of the
signed signal inverted. Finally, we evaluated the precision of
detecting the inversion points as follows:

precision =
Set(sign inversion) ∩ Set(local minimum)

Set(local minimum)
(8)

where Set(·) is the set of target points. Here, the local
minimum was detected using the scipy argrelmin function. The
results were 100% for Chirp, 96.6% for MIDI, and 79.0%
for Speech. The more complex the audio signal, the worse
the estimation performance, but despite being a very simple
method, it is still effective. Also, considering the nature of
sound signals, even if the sign assignment is wrong, if the
error is not concentrated, it may not affect the overall sound
impression because it appears as short time noise.

In real environments, it is difficult to detect local minimum
points because the recorded event data contains noise. There-
fore, our algorithm uses a hard threshold process based on
Fourier transforms to remove just the noise from the target
signal and so detect the local minima. The threshold process
is achieved by the following policy.

N ′
l (ω) =

{
Nl(ω) if |Nl(ω)| > max

ω
|Nl(ω)| ∗ η

0 otherwise
(9)

where Nl : R → C is the short-time Fourier transform of
signal Nl(t

′) and η is the threshold parameter. Our algorithm
recovers the velocity of the speckle pattern shift by performing
local minimum detection on the denoised signal and assigning
sign inversion to each detected point. Finally, integrating the
recovered velocity yields an estimate of the vibration signal.
Offset, which occurs due to the imperfect assignment of
signs, is corrected by taking the difference against the moving
average. Our framework is summarized in Fig. 2.

IV. EXPERIMENTS

A. Setup

We constructed a measurement system using a Prophesee
EVK4 (Sony IMX636ES, 1280 × 720 pixels) with a 50mm
lens and a 638nm 40mW laser. The measurement conditions
were the same as described in related methods [3], [7], [8],
with the bag of chips placed in front of the speaker and
captured from 1m away. The three audio sources used in Sec.
III were output from the speaker. We conducted experiments
on each audio source under two audio level conditions, High
and Low, to verify the robustness of the methods tested against
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Fig. 2: Framework overview. The object vibration caused by sound is observed as speckle pattern shifts by the event camera.
Event signals are counted during the count interval and converted into unsigned speed values. The velocity is recovered by
sign restoration through denoising and local minimum detection. Finally, by integrating the velocity and offset correction, the
vibration signal is estimated.

audio levels. The audio levels were set as follows: average
of the entire signal was 90dB(A) and 120dB(A) for Chirp,
75dB(A) and 105dB(A) for MIDI, and 85dB(A) and 115dB(A)
for Speech. For our method, parameter ∆t was set to 1

44,100
[s] and η to 0.05 for all audio sources.

EBVM [8] was used as a benchmark for evaluating the
performance of the recovered audio. To capture specular
reflection for EBVM, we set a DC powered light to the side of
the target object. The Fourier support was set at 5%, and the
convergence condition was set to 0.1% or less of the signal for
the part that was changed due to the zero crossing constraint.

Performance of each method was evaluated using three
metrics: segmental SNR (SSNR) [17], median vector angle
error (MVA) [8], and vector angle error for the entire signal
(VA). Since the recovered audio signal does not contain the
intensity information of the original signal, the signal used for
SSNR is normalized using the maximum value of the entire
signal.

B. Sound Recovery from a Bag of Chips

Fig. 3 shows the spectrograms of the audio recovered using
each method under the High audio level condition. The results
of the EVBM recovery were weak in signal strength for all
audio sources, and there was a lot of noise overall. Chirp could
not be recovered after 1000Hz because the vibration was too
minute to observe changes in specular reflection. On the other
hand, our method exhibited relatively little noise and could
successfully recover the original signal for Chirp and MIDI.
Comparing the results of our method for each sound source, it
appears that the recovery performance for Speech is low. The
performance of the sign inversion estimation described in Sec.
III is thought to be one of the causes. Actually, the limitation
of our method is that it cannot correctly assign signs if the
signal has a stationary point that is neither a local maximum
nor a local minimum. For signals with complex waveforms,
such as speech, there are many such points, and this is thought
to be one factor reducing the accuracy of sign inversion.

Fig. 4 shows the spectrograms of the audio recovered using
each method under Low audio level condition. As shown in
the middle row of Fig. 4, EVBM fails completely at the

(a) Chirp (b) MIDI (c) Speech

Fig. 3: Sound recovery under ”High” audio level condition.
Spectrograms of (top row) ground truth, (middle row) recov-
ered audio signals by EBVM, (bottom row) recovered audio
signals by our method. The audio played was (a) Chirp, (b)
MIDI, or (c) Speech.

low audio level. The reason for this is that when the audio
level decreases, the vibration of the object also becomes more
minute, making it more difficult to observe changes in specular
reflection. On the other hand, since speckle is sensitive to
minute fluctuations, our method is very robust with respect to
audio levels. Comparing the bottom rows of Fig. 3 with those
of Fig. 4, the superiority of our method is more significant at
low audio level rather than at high audio level. This is thought
to be due to the fact that the vibration mode of the object
becomes corrupted when the audio level is too high.

Tab. I shows that the recovery performance of our method
is superior to EBVM in most metrics. For Speech, EBVM
was superior in MVA at the high audio level, but our method
was comparable. As with the spectrogram results, comparing
the performance for each sound source, the results were poor
for Speech. Tab. I shows that that our method has excellent
recovery performance even at low audio level, and that it has
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(a) Chirp (b) MIDI (c) Speech

Fig. 4: Sound recovery under ”Low” audio level condition.
Spectrograms of (top row) ground truth, (middle row) recov-
ered audio signals by EBVM, (bottom row) recovered audio
signals by our method. The audio played was (a) Chirp, (b)
MIDI, or (c) Speech.

Table I: Sound recovery quality evaluated using segmental
signal-to-noise-ratio (SSNR) [17], median vector angle error
(MVA) [8], and vector angle error for the entire signal (VA).

Method Audio Audio Level SSNR MVA VA
EBVM [8] Chirp High -0.50 89.9 86.8

Ours Chirp High -0.17 15.5 51.6
EBVM [8] Chirp Low -0.88 89.9 89.6

Ours Chirp Low -0.04 15.8 33.6
EBVM [8] MIDI High -1.41 67.7 74.1

Ours MIDI High -2.14 65.2 64.9
EBVM [8] MIDI Low -3.11 87.9 87.3

Ours MIDI Low -0.34 48.6 59.6
EBVM [8] Speech High -7.64 68.2 78.9

Ours Speech High -6.29 69.1 75.7
EBVM [8] Speech Low -15.70 87.2 88.3

Ours Speech Low -3.13 68.3 75.2

high robustness.

V. CONCLUSION

The proposed method, which uses an event-based camera
to observe the changes in laser speckle caused by surface
vibration, has a simpler device structure than conventional
methods and achieves robust sound recovery with regard to
measurement conditions. Our method has no special require-
ments such as specular reflection, is robust to sound level,
and has a very simple recovery process, so its feasibility is
extremely high. The proposed method did not perform well
for more complex sounds such as speech, but there is room
for improvement by developing more advanced algorithms for
sign estimation, a future task.
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