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Abstract— Remote Photoplethysmography (rPPG) has 

emerged as a promising technique for assessing Pulse Rate 

Variability (PRV) using standard video cameras. While most 

existing research relies on RGB imaging and focuses on heart 

rate estimation, this work systematically evaluates the feasibility 

of extracting time-domain PRV parameters from near-infrared 

(NIR) images via deep learning. A proprietary dataset of 10 

participants was recorded under controlled low-light conditions 

using an 850 nm light source and synchronized PPG signals as 

ground truth. Four state-of-the-art architectures—PhysNet, 

PhysFormer, EfficientPhys, and LSTCrPPG—were trained and 

evaluated using a random-search hyperparameter tuning 

framework. Results show that PhysNet consistently achieved the 

lowest Mean Absolute Error (MAE) when estimating both Mean 

of Normal-to-Normal Intervals (meanNNI) and Standard 

Deviation of Normal-to-Normal Intervals (SDNN), indicating 

superior performance in capturing average pulse intervals and 

short-term variability. However, each PRV metric required a 

different set of hyperparameters for the Physnet model, 

highlighting the importance of optimising model settings based 

on the specific physiological parameter being measured. While 

PhysFormer and LSTCrPPG are capable of learning complex 

spatiotemporal representations, they require larger datasets to 

avoid overfitting. In contrast, EfficientPhys proved less effective 

at preserving the morphological and dynamic features of the 

pulse waveform. These results underline the importance of 

adapting model design, loss functions and dataset design to 

reduce the error in PRV parameter estimation. Despite 

PhysNet’s robust performance under data-constrained 

conditions, further refinements are required to reduce errors in 

short-term variability estimates. Additionally, exploring 

architectures that leverage pixel-intensity differences, 

alternative loss functions, and more sensitive imaging 

technologies (e.g., SWIR) hold potential to advance rPPG-based 

PRV monitoring in real-world applications. 
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I. INTRODUCTION 

Monitoring physiological states is essential not only in 
clinical settings but also in activities that require sustained 
attention, such as driving. Among the various physiological 
markers, Pulse Rate Variability (PRV) has emerged as a key 
indicator for assessing stress, fatigue, or cognitive load [1]. 

Conventional Photoplethysmography (PPG) techniques, 
while tested and reliable, often rely on contact-based sensors 
that may be impractical in real-world scenarios. 

In this context, remote Photoplethysmography (rPPG) has 
gained attention as a non-invasive alternative capable of 
detecting subtle skin changes through standard video cameras, 
offering the possibility to measure PRV without the need for 
contact devices. This technology represents a significant step 
forward in physiological monitoring by enabling continuous, 
contact-free measurements in situations where traditional 
sensors may not be suitable. 

Current rPPG signal extraction methodologies are 
generally classified into two main groups: classical signal and 
image processing methods, and deep learning-based 
approaches [2]. Although both have shown promising results 
in controlled conditions, deep learning-based solutions have 
demonstrated greater robustness to lighting and motion 
variations, enhancing the accuracy of rPPG signal extraction 
under non-controlled conditions [2]. 

Most of the available research employs RGB cameras for 
rPPG estimation, whereas near-infrared (NIR) technology has 
been less explored [3]. rPPG extraction is generally more 
robust at visible wavelengths —especially in the green region 
of the spectrum, where light absorption by the skin is maximal 
—than in the NIR region. In NIR imaging, differences in light 
attenuation and absorption can reduce pulse amplitude and 
limit the available signal range. Moreover, the lower surface 
reflectance in the NIR spectrum necessitates stable, high-
quality infrared illumination to maintain a sufficient signal-to-
noise ratio. Consequently, processing models and deep 
learning networks must be specifically adapted to the unique 
physiological and photometric characteristics inherent to NIR 
capture. 

Although NIR cameras offer significant benefits, such as 
reduced sensitivity to solar radiation in environments with 
varying lighting and improved performance under low-light 
conditions through the use of dedicated NIR illumination 
(which can be added without affecting the subject’s vision), 
most studies using NIR focus solely on average heart rate 
estimation. As a result, the accuracy of other PRV parameters 
derived from rPPG NIR remains insufficiently investigated 
[4]. This research gap underscores the need for a 
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comprehensive evaluation of PRV extraction methods to 
develop robust, real-world monitoring systems. 

To the best of our knowledge, this study is the first to 
systematically compare PRV parameters extraction from 
rPPG signals derived from NIR images using multiple deep 
learning models, including PhysNet, PhysFormer, 
EfficientPhys, and LSTCrPPG. These methods were selected 
based on their relevance in the literature and architectural 
differences, which allows for an assessment of how distinct 
approaches influence PRV from rPPG NIR estimation 
accuracy. Using a proprietary dataset, we evaluate the 
performance of these models under low-light conditions. For 
this analysis, only models that take image sequences as inputs 
have been considered, excluding those relying on intensity 
differences between pixels in consecutive frames, which will 
be addressed in future research. 

This work assesses the feasibility of deep learning models 
for PRV parameters estimation via rPPG using NIR imaging, 
offering key insights into their robustness and reliability under 
variable lighting conditions. By highlighting both the 
strengths and limitations of these methods, this study 
contributes to the development of more efficient and adaptable 
monitoring systems for diverse real-world applications. 

II. METHODOLOGY 

A. Dataset description 

A dataset of 10 subjects (4 males and 6 females) was 
acquired. Participants’ age ranged from 35 to 49 years with no 
reported cardiovascular or dermatological issues. Two 
separate measurements were recorded on different days to 
ensure day-to-day variability was captured, resulting in a total 
of 20 recordings. The subject remained in an upright sitting 
posture and instrumented in a darkened room throughout the 
sessions, with the camera positioned in front of them, at 
approximately 1.5 meters, and angled to capture the face. The 
forehead, face and lower neck were exposed to the cameras. 
Subjects were required to remain still and quiet, breathing 
normally. 

During each recording session, a NIR camera [5] was used 
to capture images synchronously with a resolution of 640x640 
pixels at a sampling rate of 60 Hz (see Figure 1 for the 
experimental setup). Each session lasted approximately 1 
minute, resulting in ~3600 frames. In total, around 72,000 
images were collected. Image capture was synchronised with 
the acquisition of PPG signal. For this purpose, the 
BiosignalsPlux acquisition system [6] was used together with 
a PPG sensor [7] placed on the index finger of the left hand.  

Fig. 1. Experimental setup and example of NIR imaging. The left image 

shows the experimental setup, including the NIR camera, NIR illumination 
source, and PPG sensor placed on the subject’s index finger. The right image 

presents an example of a NIR facial image captured during the experiment, 

demonstrating the imaging conditions and illumination uniformity.  

The recording environment was illuminated exclusively 
by an 850 nm light source. To ensure that this NIR source was 
the primary illumination, all visible artificial and natural 
ambient light sources were eliminated, minimizing potential 
interference. Additionally, the light source was equipped with 
an electronic system and a light diffusion lens to provide 
continuous, stable, and uniform illumination throughout the 
recordings.  

B. Dataset preprocess 

Preprocessing was applied to both the ground-truth PPG 
signals and the NIR images. For the PPG signals, a baseline 
drift removal was performed using the detrend function from 
SciPy [8], followed by a second-order Butterworth bandpass 
filter (0.33–3.5 Hz), which also serves as an anti-aliasing 
measure. The signals, initially sampled at 1000 Hz, were 
downsampled to 60 Hz to match the camera’s frame rate. 
Finally, each PPG signal was normalized per clip by 
subtracting its median and dividing by the median absolute 
deviation (MAD). The resulting signal was then scaled to the 
range [–1, 1] by dividing by its maximum absolute value. This 
robust normalization is more resistant to outliers than standard 
z-scoring and ensures consistent amplitude scaling across 
sequences. 

For NIR images, face detection was performed using the 
MediaPipe Facemesh model [9], which locates and tracks the 
subject’s face. Minor deviations in the detected position were 
corrected by computing an average face location over the 
entire recording, minimizing tracking drift. This was achieved 
by averaging all bounding boxes detected by MediaPipe 
Facemesh frame-by-frame, generating a stable reference 
position for cropping. The cropped images were then resized 
to 128×128 pixels to provide a uniform input format across all 
models. 

C. Architectures and experimental configuration 

This study focuses on neural network architectures that 
process variable-length sequences of NIR images as inputs 
and generate a continuous rPPG signal as an output through a 
regression task (see Figure 2 for an overview of the complete 
pipeline). Four distinct models (PhysNet, PhysFormer, 
EfficientPhys y LSTCrPPG) were selected. Table I 
summarizes the main features of the models. All of them were 
originally designed for three-channel RGB inputs and 
subsequently modified to accept single-channel NIR images. 
Additionally, the input was adapted to accommodate 128×128 
images and variable-length image sequences. The 
RemoteBiosensing framework [10] was adapted and 
employed to train and evaluate the models. 

TABLE I.  MODELS DESCRIPTION 

Model Main Features 

PhysNet [11] 

Utilizes 3D convolutions to extract semantic rPPG 

features in both spatial and temporal domains, 
enabling robust contextual representations and 

reducing temporal fluctuations. Its encoder-

decoder architecture minimizes redundancy and 
temporal noise. 

PhysFormer [12] 

Adaptively integrates local and global 

spatiotemporal features by capturing temporal 
differences in skin color to enhance prediction 

accuracy. Its architecture comprises a shallow stem 

with convolutional blocks, a tube tokenizer, 
multiple temporal difference transformer blocks, 

and an rPPG predictor head. 
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Model Main Features 

EfficientPhys [13] 

A convolution-based architecture known for its 

simplicity and speed. It operates as a single-branch 
network that processes raw video frames without 

preprocessing to generate a first-derivative PPG 

signal. Key components include a custom 
normalization layer (using temporal differences 

and batch normalization), self-attention modules, 

and tensor shift modules (TSM) for efficient 
spatiotemporal 

LSTCrPPG [14] 

Employs an hourglass-shaped 3D CNN with skip 

connections to capture both short- and long-term 
spatiotemporal features. It incorporates a Temporal 

Attention Refinement Module (TARM) to align 

these features and utilizes a hybrid loss—
combining time-domain and frequency-domain 

components—for enhanced rPPG signal 

estimation. 

 

An 80/20 split of the dataset was used for training and 
validation/testing, ensuring that subjects in the validation/test 
set were not included in the training phase. To optimize 
performance, a random-search hyperparameter tuning process 
was implemented. The hyperparameter space encompassed 
the following parameters: learning rate (LR) ∈ {0.05, 0.01, 
0.005}; input image sequence length (Len) ∈ {120, 240, 300}; 
batch size (BS) ∈ {4, 8, 16}; overlap in input image sequence 
(Ov)  ∈ {0, 60}. Three different optimization algorithms (Opt) 
were evaluated: AdamW (Adaptive Moment Estimation with 
decoupled weight decay), SGD (Stochastic Gradient Descent), 
and RAdam (Rectified Adam optimizer). The loss function 
was selected from one of the following: negative Pearson 
correlation loss (neg_pearson), Fourier transform-based loss 
(FTT loss), LSTCrPPG loss, and blood volume pulse velocity 
loss (BVPVelocityLoss). The LSTCrPPGLoss [14] combines 
time-domain mean square error with a frequency-domain loss 
computed from the log power spectral densities of the signals, 
ensuring alignment in both temporal and spectral features, 
while the BVPVelocityLoss enhances waveform fidelity by 
integrating negative Pearson correlation with additional 
penalties based on peak alignment and signal derivative 
differences. Each model was trained for 15 epochs per 
hyperparameter configuration. A total of 150 different 
configurations were executed per architecture. 

After training, the output signals were refined and directly 
compared with the ground-truth signals to evaluate 
performance (also illustrated in Figure 2). Table II and III 
details the hyperparameter combinations that yielded the best 
metrics for each architecture, thereby highlighting the 
influence of different design choices on the extraction of 
reliable signals from NIR images. 

D. rPPG signal refinement and IBIs extraction 

The same detrending, band-pass filtering, and 
normalization steps used for the ground truth PPG signal were 
also performed on the model’s output rPPG signal to ensure a 
fair comparison. 

After that, the rPPG signal is processed to extract inter-
beat intervals (IBIs) by identifying systolic peaks 
corresponding to each pulse. Peak detection was performed 
using a custom algorithm, which identifies local maxima by 
comparing each sample with its neighbours within defined 
segments. This method integrates an adjustable quality 
criterion to validate detected peaks, ensuring that only 
physiologically relevant maxima are retained while 

suppressing spurious detections. Additionally, an adaptive 
thresholding mechanism was applied to dynamically adjust 
detection sensitivity based on signal characteristics. To 
enhance robustness, the detection function operates in a 10-
second sliding window (with a 5-second overlap) to reduce the 
influence of high-amplitude artifacts that could obscure true 
systolic peaks. 

To ensure the physiological plausibility of the extracted 
IBIs, outliers corresponding to heart rates outside the 
physiological range (30–200 beats per minute) were first 
removed. An iterative filtering approach was then applied to 
refine the detected peaks and validate the remaining intervals. 
The acceptable IBI range was dynamically recalculated as the 
rolling mean ± k·SD of the most recent valid intervals, where 
k controls the sensitivity of the threshold. Any intervals 
exceeding these adaptive bounds were excluded, and the 
process was repeated until no further outliers were detected. 
Finally, linear interpolation was used to reconstruct a 
continuous IBI sequence while preserving physiological 
consistency. 

An identical peak detection and iterative filtering 
procedure was applied to the ground-truth PPG signal to 
ensure direct comparability with the rPPG-derived IBIs. 

Fig. 2. Overview of the proposed rPPG pipeline for PRV estimation. In the 

first blue stage, NIR images are preprocessed—this includes face detection, 

cropping, and resizing to 128×128. The processed frames are then passed to 
a deep learning models which output the raw rPPG signal (green stage). A 

post-processing step (red stage) detects systolic peaks, computes inter-beat 

intervals (IBIs), and derives the final time-domain PRV parameters (e.g., 

meanNNI and SDNN). 
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E. Evaluation Metrics 

This study focuses on time-domain PRV parameters, 
which are widely used in short-term recordings due to their 
reliability and lower sensitivity to recording duration 
constraints compared to frequency-domain or nonlinear 
metrics [15]. Among these parameters, the two most 
informative indices were selected for their robustness: Mean 
of Normal-to-Normal Intervals (meanNNI), which represents 
the central tendency of IBIs, and Standard Deviation of 
Normal-to-Normal Intervals (SDNN), which quantifies short-
term heart rate variability. 

 To evaluate model performance, Mean Absolute Error 
(MAE) was used as the primary metric due to its 
interpretability and robustness against outliers, offering a 
more balanced measure of average deviation than Root Mean 
Square Error (RMSE), which is more sensitive to extreme 
values.  

III. RESULTS AND DISCUSSION 

Tables II and III present the MAE for meanNNI and 
SDNN, respectively. PhysNet achieved the lowest MAE for 
both metrics, indicating superior performance in capturing 
both the central tendency (meanNNI) and variability (SDNN) 
of pulse rate.  

TABLE II.  MAE MEANNNI (MS) ACROSS DIFFERENT MODELS AND 

HYPERPARAMETER CONFIGURATIONS 

Model 

MAE 

MeanNNI 

(ms) 

Hyperparameters 

PhysNet 68.8 

LR=0.001, Len=120, BS=4, Ov=0, 

Opt=AdamW, Loss=neg_pearson, 
Training Samples=57 600 

PhysFormer 83.0 

LR=0.01, Len=300, BS=4, Ov=0, 

Opt=AdamW, 

Loss=neg_pearson/FTT, Training 
Samples=57 600 

EfficientPhys 123.1 

LR=0.01, Len=120, BS=16, Ov=0, 

Opt=AdamW, Loss=FTT, Training 
Samples=57 600 

LSTCrPPG 99.3 

LR=0.05, Len=120, BS=4, Ov=0, 

Opt=AdamW, 
Loss=BVPVelocityLoss, Training 

Samples=57 600 

TABLE III.  MAE SDNN (MS) ACROSS DIFFERENT MODELS AND 

HYPERPARAMETER CONFIGURATIONS 

Model 
MAE SDNN 

(ms) 
Hyperparameters 

PhysNet 103.75 

LR=0.005, Len=300, BS=4, Ov=60, 

Opt=RAdam, 
Loss=BVPVelocityLoss, Training 

Samples=67 200 

PhysFormer 202.4 

LR=0.01, Len=300, BS=4, Ov=0, 
Opt=AdamW, 

Loss=neg_pearson/FTT, Training 

Samples=57 600 

EfficientPhys 263.8 

LR=0.01, Len=120, BS=8, Ov=60, 

Opt=RAdam, Loss=neg_pearson, 

Training Samples=67 200 

LSTCrPPG 261.31 

LR=0.01, Len=120, BS=4, Ov=0, 

Opt=RAdam, Loss=neg_pearson, 

Training Samples=57 600 

 

A. MAE for MeanNNI and SDNN 

For meanNNI, PhysNet obtained a MAE of 68.8 ms, 
outperforming PhysFormer (92.0 ms) and notably exceeding 

EfficientPhys (117.2 ms) and LSTCrPPG (117.0 ms). A closer 
look at the hyperparameters shows that PhysNet’s best 
configuration utilized a smaller input length (120 frames →     
2 s), no overlap, and AdamW optimizer with a negative 
Pearson correlation loss. A similar trend was observed for 
SDNN, where PhysNet again recorded the lowest MAE 
(103.75 ms). Interestingly, in this case, the best-performing 
hyperparameters for PhysNet included a larger input length 
(300 frames → 5 s), an overlap of 60 frames, and a different 
optimizer (RAdam) with the BVPVelocityLoss function. 
These quantitative results are further illustrated in Figure 3, 
which shows an example segment from the test dataset 
comparing the ground-truth PPG (blue) with PhysNet’s raw 
(orange) and filtered outputs (green). 

Fig. 3. Example segment from the test dataset illustrating PhysNet’s 

performance. The ground-truth PPG (blue) is compared to PhysNet’s raw 

output (orange) and its filtered version (green), demonstrating the model’s 
ability to approximate the waveform morphology and the additional 

refinement provided by post-processing. 

This result implies that, while meanNNI can be estimated 
accurately with shorter sequence lengths and simpler 
optimization strategies, characterizing SDNN might benefit 
from longer temporal windows.  With short windows, in 
addition to fewer valid intervals, there is greater sensitivity to 
artifacts and outliers that can distort the true variability. 
Consequently, the models may end up overestimating or 
underestimating the variability, which increases the MAE in 
the SDNN estimation. The differences in optimal 
configurations for meanNNI and SDNN further indicate that 
no single set of parameters in Physnet necessarily yields the 
best performance across all PRV metrics, emphasizing the 
need for tailored approaches depending on the specific 
physiological feature of interest. 

In contrast, PhysFormer, EfficientPhys, and LSTCrPPG 
exhibited higher MAEs across both meanNNI and SDNN. 
Although PhysFormer applied a single configuration for both 
metrics (learning rate=0.01, input length=300, batch size=4, 
overlap=0, AdamW, neg_pearson/ftt), it did not adequately 
capture short-term variability. EfficientPhys (123.1 ms 
meanNNI; 263.8 ms SDNN) and LSTCrPPG (99.3 ms 
meanNNI; 261.31 ms SDNN) likewise fell short, suggesting 
that their respective architectures and hyperparameter choices 
may be less suited to the current NIR-based dataset.  

B. Architecture-Specific Insights 

A detailed comparison of PhysNet, PhysFormer, 
LSTCrPPG, and EfficientPhys under small NIR dataset 
conditions reveals distinct performance profiles. PhysNet, 
leveraging 3D convolutions, can be tuned to prioritize beat 
interval consistency (improving meanNNI) or short-term 
fluctuation capture (improving SDNN). However, no single 
configuration has excelled at both objectives simultaneously. 
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PhysFormer (transformer-based) and LSTCrPPG (hourglass 
3D CNN) capture both beat intervals and subtle variability but 
exhibit rapid overfitting, suggesting a larger dataset could 
better exploit their complex spatiotemporal architectures. In 
contrast, EfficientPhys, with its simpler single-branch design, 
struggled to accurately reproduce the pulse waveform under 
these conditions, indicating limited representational capacity 
for subtle NIR signal variations 

Overall, these findings underscore the importance of 
aligning model capacity, dataset size, and loss functions with 
the specific target (morphology vs. dynamics) in PRV from 
rPPG NIR estimation. While PhysNet proved most adaptable 
under data constraints, it lacks the ability to capture both 
waveform shape and fluctuation simultaneously at optimal 
levels. PhysFormer and LSTCrPPG may excel given a more 
extensive training corpus, whereas EfficientPhys appears 
inherently limited for tasks requiring nuanced waveform 
representation. 

C. Real-World Implication 

From a practical standpoint, PhysNet’s superior 
performance in estimating both meanNNI and SDNN 
underscores its potential suitability for real-world monitoring 
scenarios. In particular, applications primarily concerned with 
averaged PRV values (e.g., meanNNI) may benefit from 
PhysNet’s relatively low error rates, enabling reliable trend 
analysis over time. However, the SDNN errors observed 
across all models—even for PhysNet—remain too large for 
applications requiring fine-grained insights into mental states, 
where subtle changes on the order of 20–30 ms can be critical.  

D. Limitations and Future Directions 

Despite the promising results, this study is subject to 
several limitations. First, the dataset size remains small (10 
subjects), reducing the models’ capacity to generalize across 
broader demographic and physiological variations. 
Additionally, the short recording durations (~1 minute per 
session) and tightly controlled lighting conditions may not 
fully capture real-world scenarios where ambient 
illumination, motion artifacts, and subject-specific factors can 
significantly affect rPPG signal quality. Moreover, while 
PhysNet demonstrated stronger adaptability under these 
constraints, even its estimated SDNN values remain too 
coarse for applications requiring highly precise measures of 
autonomic function. 

Future efforts will explore architectures that process pixel-
intensity differences between consecutive frames, potentially 
capturing subtle blood flow variations more effectively. 
Investigating alternative loss functions that prioritize peak 
localization could also yield more accurate beat detection for 
PRV analysis. Building on the 3D convolution, transformer, 
and hourglass designs tested here, refined architectures may 
further enhance performance under limited data conditions. 
Finally, Short-Wave Infrared (SWIR) cameras, offering 
higher sensitivity in the IR range, represent a promising 
avenue for improving signal quality in challenging lighting 
environments, thereby moving closer to robust, real-world 
rPPG implementations. 
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