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Abstract—Search and Rescue (SAR) operations increasingly
use drones with thermal cameras to locate individuals
in distress. However, human operators are required for
navigation and detection. Given modern drones’ self-navigation
capabilities, automating human detection can enhance efficiency.
While previous studies leveraged multi-spectral imagery,
specifically RGB and thermal, for object detection, they often
introduced computational overhead. Building on recent YOLO
advancements, we adapt YOLOVS to support multi-spectral input
using early feature fusion, modified convolution kernels, and
improved up-scaling blocks for better small-object detection.
Experiments on RGB-thermal multispectral data show a 22%
mAP50-95 improvement over the baseline and a 10% gain over
prior work, while maintaining real-time performance.

Index Terms—human detection, object detection, multi-
spectral, thermal, real-time, yolo
I. INTRODUCTION
Human presence detection locates individuals in an

environment using techniques ranging from surveillance
cameras to autonomous sensor-equipped systems [1]. This task
is crucial for Search And Rescue (SAR) operations, which
assist individuals in distress due to disasters, accidents, or
emergencies. Given the narrow time window for saving lives
[2], rapid detection is essential.

Traditional SAR methods, such as foot searches, rely
on volunteers and can be unreliable in inaccessible
terrains, requiring costly specialized equipment. Some SAR
institutions, like Idaho Mountain SAR!, have adopted
unmanned aerial vehicles (UAVs) equipped with thermal
cameras, enabling rapid area coverage and accurate victim
localization. UAVs are cost-effective, operate in hazardous
environments without endangering human lives, and facilitate
efficient large-scale searches [3]. However, each UAV requires
a human operator, limiting scalability.

Recent advancements in autonomous UAV navigation
suggest that integrating Al-driven object detection can enhance
SAR efficiency [4]. Al enables multiple UAVs to operate
simultaneously without direct human supervision, making
operations scalable by investing in additional drones rather
than personnel.

SAR environments present challenges such as dense
vegetation, rugged terrain, and adverse weather. Thermal
imaging mitigates visibility issues by detecting infrared
emissions from human bodies [5] as illustrated in Fig. 1.

Tdaho Mountain Search & Rescue: https://imsaru.org/
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However, thermal cameras lack the fine details of visible-
spectrum cameras, which are useful in distinguishing humans
from heat-emitting background elements. A fusion of visible
and thermal data offers a promising solution.

Fig. 1: Example of a human presence not visible in the RGB
image (left) but visible in the thermal image (right) [6].

Several studies on multispectral human detection [7-9] have
increased model complexity, raising computational demands.
Ozyurt et al. [6], use thermal images exclusively, reducing
accuracy. Balancing complexity and detection accuracy is
crucial, particularly given UAV constraints on power and
computation [10]. The YOLO model family [11], known for
real-time efficiency, presents a viable approach.

Additionally, recognizing tiny human figures in aerial
images remains challenging due to typical UAV flight altitudes
(50-200m) [7, 9, 12]. To address these issues, we extend the
YOLOVS to support n-channel multispectral imagery while
enhancing small-object detection. Our modifications improved
mAP50-95 by 22% over the baseline and 10% over a recent
study. Despite a minor inference speed reduction (7 FPS),
our model maintains real-time performance at 52 frames per
second (FPS).

These improvements, combined with UAV self-navigation,
can help SAR institutions scale operations efficiently while
retaining compatibility with future YOLO updates.

II. RELATED WORK

Recent advancements in object detection have focused on
improving accuracy, efficiency, and feature representation. Li
et al. [13] introduced the Large Selective Kernel Network
(LSKNet) for remote sensing, dynamically adjusting receptive
fields to model contextual information. Its spatial selective
mechanism across large depth-wise kernels achieved state-of-
the-art results on HRSC2016? and DOTA-v1.0° datasets.

ZHRSC2016: https://www.kaggle.com/datasets/guofeng/hrsc2016
3DOTA: https://captain-whu.github.io/DOTA/
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YOLO-based architectures have evolved significantly. A
recent widely used version, YOLOVS8, is adapted for
UAV image recognition using Bi-PAN-FPN, GhostblockV2,
and WiseloU loss, improving small target detection on
VisDrone2019* [14]. Wang et al. [15] proposed YOLOVY,
integrating Programmable Gradient Information (PGI) and
Generalized Efficient Layer Aggregation Network (GELAN)
to enhance gradient flow and feature reuse, outperforming
previous versions on MS-COCO [16]. Several variants have
specifically targeted small object detection. YOLO-S [17] uses
a lightweight architecture with compact feature extractors and
skip connections for aerial imagery. YOLO-C [18] employs
attention mechanisms and deformable convolutions to enhance
robustness in agricultural and traffic domains. Scaled-YOLOv4
[19] improves performance via cross-stage partial network
scaling. However, these models primarily rely on RGB inputs
and lack native support for multispectral fusion, limiting their
adaptability to complex environments.

To address the limitations of thermal-only imaging, Ozyurt
et al. [6] applied CLAHE filtering to convert single-channel
thermal images into a 3-channel format, enhancing background
detail while maintaining real-time efficiency.

Multispectral object detection has been explored in
autonomous driving and surveillance. Roszyk er al. [7]
extended YOLOv4 [20] for pedestrian detection using early,
middle, and late fusion strategies. Middle fusion, which added
a dedicated backbone for thermal features, achieved the best
performance but increased model complexity. Similarly, Xie
et al. [8] improved YOLOvVS with a Feature Interaction and
Self-Attention Fusion Network (FISAFN) to handle lighting
variation, but relied on a dual-backbone architecture limited
to 4-channel inputs.

Zou et al. [9] enhanced YOLOvVS with a multidimensional
attention mechanism and background suppression loss,
improving multispectral feature fusion at the cost of increased
complexity. For small object detection, Tang et al. [21]
proposed HIC-YOLOVS, incorporating an extra prediction
head and involution blocks to boost mAP on VisDrone-2019-
DET dataset’.

While these works demonstrate promising directions, many
rely on RGB-pretrained weights or fixed input modalities,
which may limit generalization. In contrast, our approach
adapts YOLOv8 for flexible multispectral fusion using a
streamlined architecture. Its balance between accuracy and
efficiency makes it well-suited for real-time search and rescue
scenarios, and our modifications can be extended to future
YOLO versions.

III. MoODIFIED YOLO MODEL

This section presents our modifications to YOLOv8 for
multispectral detection while preserving its core architecture.
Key changes include adapting the backbone to support general

4VisDrone-Dataset: https://github.com/VisDrone/VisDrone- Dataset
SVisDrone 2019 Object Detection Challenge Dataset: https://www.kaggle.
com/datasets/shisuiotsutsuki/visdrone2019-det

n-channel inputs, adjusting kernel sizes, and enhancing up-
sampling with bicubic interpolation.

A. Backbone Modification

The default YOLOv8 backbone is designed for three-
channel RGB images, limiting its application to multispectral
data. To enable support for general n-channel inputs, we
modified the first convolutional layer, which processes input
images before feature extraction begins (Fig. 2). This
modification allows the backbone to accommodate various
multispectral inputs without altering its fundamental structure.
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Fig. 2: Modified YOLOVS backbone network.

In this research, we fuse RGB and thermal images into a
4-channel input before feeding them into the network. The
backbone consists of multiple convolutional layers and C2f
blocks [11], which extract features at different levels. By
modifying the input layer to accept an arbitrary number of
channels, we ensure compatibility with multispectral datasets
while preserving the hierarchical feature extraction process.

B. Kernel Size Adaptation

Since the original backbone uses 3x3x3 kernels in its first
convolutional layer, we adapted the kernel size to 3x3xn
for multispectral images. For our 4-channel RGBT input, the
kernel is set to 3x3x4, keeping stride and padding unchanged.
This lets the network extract low-level features from all
spectral channels without affecting later layers.

By modifying only the kernel size, the backbone continues
to generate feature maps with the same depth as for 3-channel
inputs, ensuring compatibility with the downstream C2f blocks
and the PAN (Path Aggregation Network) used in YOLOV8’s
neck. This maintains the model’s ability to refine and aggregate
features without requiring additional structural changes.

C. Enhanced Up-Sampling with Bicubic Interpolation

In YOLOVS, up-sampling layers in the neck use nearest
neighbor interpolation [22] to align feature maps from the
backbone with those from the Spatial Pyramid Pooling-
Fast (SPPF) block [23]. Although efficient, nearest neighbor
interpolation can cause information loss, especially for small
object detection.

To improve feature retention, we replaced nearest
neighbor interpolation with bicubic interpolation [24]. Unlike
nearest neighbor, which considers only four pixels, bicubic
interpolation utilizes a 16-pixel neighborhood, preserving finer
details during up-scaling. This modification enhances the
model’s ability to capture small object features, potentially
improving detection accuracy.
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IV. EXPERIMENTS AND RESULTS

We implemented the model using the PyTorch-based
Ultralytics YOLOvS8 framework®, trained on an NVIDIA A100
GPU with an Adam optimizer, an initial learning rate of 0.001,
a batch size of 16, and an input image resolution of 640 x 640.
Data augmentation, including mosaic augmentation, random
perspective transformations, and random HSV adjustments,
was used to improve generalization. Evaluation was based
on precision, recall, and mean Average Precision (mAP) at
various IoU thresholds.

A. Ablation Study

To assess the baseline and modified models, we conducted
an ablation study using the NII-CU dataset [25], which
contains numerous tiny objects. The baseline model, trained
on the RGB portion of the dataset using transfer learning from
MS-COCO [16], ran for 234 epochs.

In the first modification, we fused visible and thermal
images, upgrading the backbone for 4-channel inputs, and
trained it for 319 epochs. In the second modification, we added
the upgraded up-sampling method, and trained for 404 epochs.

TABLE I: Results of the ablation study on the NII-CU dataset.

Model Precision  Recall mAP50 mAP50-95
Baseline 0.867 0.759 0.851 0.448
+ 4CH 0.958 0.950 0.979 0.667
+ 4CH + Bicubic 0.980 0.973 0.989 0.675
Table 1 shows significant improvements with each

modification. The 4-channel input boosted precision, recall,
and mAP by 19-21%. The upgraded up-sampling method
provided an additional 1% improvement in mAP and 2% in
precision/recall.

These results suggest that 4-channel inputs enhance
detection accuracy by leveraging thermal images, which are
less influenced by environmental factors. This is confirmed
visually in Fig. 3, where the modified model detects occluded
objects more reliably than the baseline. The improved up-
sampling method further refines feature map resolution, aiding
in the localization of small objects.

B. Visual Inspection

To visualize the improvements, we present the prediction
results of the baseline and best-performing model alongside
the ground truth labels one one random sample image, in
Fig. 3. As shown in Fig. 3b, the base model struggles to detect
human presence in areas with dense vegetation, resulting
in false negatives. In contrast, our model reliably detects
occluded objects with higher confidence (see Fig. 3c).

C. Accuracy Over Scale

We tested the accuracy of our proposed solution across
different model scales to assess performance trade-offs for use
in production environments. We trained scale variants of our

SUltralytics YOLOVS: https://docs.ultralytics.com/models/yolov8/

(a) Ground Truth

(b) Base Model (c) Ours

Fig. 3: Sample images comparing predictions from the two
models with ground truth on the NII-CU dataset.

best-performing model (nano, small, medium, large, and extra
large) on the NII-CU dataset, with parameters ranging from 3
to 68 million. The mAP50-95 metric was used for comparison.

As shown in Fig. 4a, performance decreases with smaller
models but remains above 64% accuracy for the smallest
(nano) variant. The three middle variants exhibit similar
accuracy, with the largest model achieving 67.5%.

The accuracy over scale experiment highlights the trade-off
between model size and accuracy. While smaller models offer
faster inference, they come with a performance penalty. The
fact that even the smallest variant maintains over 64% accuracy
suggests that it could be suitable for resource-constrained
environments where real-time performance is critical.

D. Speed Over Scale

We also evaluated the speed of inference for different model
scales to assess trade-offs between accuracy and speed. The
inference speed was measured on the validation set from the
NII-CU dataset.

As expected, the inference speed improves with smaller
models, while larger models yield higher accuracy but lower
inference speed. The smallest (nano) model achieved an
average inference speed of 95 FPS, while the largest model
(extra-large) reached 25 FPS. These results are plotted in
Fig. 4b.
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Fig. 4: Accuracy and inference speed of our proposed models
across different scale variants of YOLOVS.

This speed/accuracy trade-off allows practitioners to choose
a model size based on their specific application requirements,
optimizing for either speed or accuracy as necessary. The
speed over scale experiment further demonstrates the trade-off
between model size and speed, allowing for the selection of
an appropriate model variant based on the specific application
requirements.
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E. Comparative Study

We extended the YOLOVS network to support 4-channel
imagery for enhanced detection and compared our results with
YOLO-MS [8], a multi-spectral detection model with a double
backbone. Xie et al. [8] evaluated YOLO-MS on the FLIR-
aligned’ and M3FD [26] datasets. Due to accessibility issues,
we used only the M3FD dataset, which includes pedestrian
detection labels for multiple classes like people, vehicles, and
street lamps.

Our multi-spectral baseline model was trained on a merged
LLVIP [27] and NII-CU dataset, improving generalization
across diverse conditions. The merged dataset includes 21,368
image pairs, mainly containing small and medium-sized
objects, aligning with our detection goals. We trained our
baseline model on this dataset for 228 epochs. Table II shows
its performance. After training on the M3FD dataset for 865
epochs, we compared results with YOLO-MS in Table III.
The results showed that our model outperformed YOLO-MS
by 4% in mAP50 and 10% in mAP50-95, showing significant
improvements despite much lower complexity.

TABLE II: Results of our best performing model pretrained
on the merged dataset.

Model
MS Baseline

Precision T Recall 1
0.955 0.927

mAP50 1
0.969

mAP50-95 1
0.656

TABLE III: Comparative results on M3FD dataset.

Model Precision T Recall T mAP50 T mAP50-95 1
YOLO-MS [8] - 0.857 0.552
Ours 0.892 0.837 0.897 0.656

In Fig. 5, we show object detection on three random sample
M3FD images, demonstrating our model’s ability to detect
various objects effectively.

peoplesle

pepeople 0.8

(b) Predictions

Fig. 5: Sample images showing the multi-class object detection
capabilities of our model on M3FD dataset.

Thttps://www.flir.com/oem/adas/adas-dataset-form

F. Real-Time Performance

A key goal of this research is to maintain inference speed
while improving model performance. To evaluate this, we
measured the average inference speed on the NII-CU dataset
[25], which includes 485 images, comparing the baseline
model with modified versions.

TABLE IV: Results of the real-time study of the models on
NII-CU dataset. 1" and | indicate higher or lower metric values
for better performance.

Model Configuration  Pre |  Inference | Post|  Total | FPS 1
Baseline Model 0.6ms 14ms 2.3ms 16.9ms 59
+ 4CH 0.5ms 14.2ms 2.2ms 16.9ms 59
+ 4CH + Bicubic 0.6ms 16.1ms 2.6ms 19.3ms 52

Table IV shows that the proposed 4-channel input model
maintains similar inference times to the baseline, with no
significant impact on FPS (59). However, the bicubic up-
sampling method adds 2.4ms to the total inference time,
reducing FPS to 52, indicating the added complexity.

In summary, the 4-channel input modification does not
affect real-time performance, but the upgraded up-sampling
method introduces a slight trade-off between accuracy and
speed, which may be a factor for real-time applications.

V. CONCLUSION

In this research, we adapted the YOLOvVS architecture for
real-time multispectral object detection, enabling m-channel
inputs and an enhanced up-sampling strategy while preserving
real-time performance and compatibility with newer YOLO
versions.

Our experiments on RGB-thermal multispectral datasets
showed a 22% improvement in mAP500-95 over the baseline
and a 10% improvement over YOLO-MS [8], without needing
multiple backbones. Despite these improvements, the model
maintained real-time inference at 52 FPS.

We also evaluated all YOLOvVS variants, finding smaller
models sacrificed some accuracy (down to 64.7%) but
significantly increased speed, with the small variant offering
the best trade-off at 66.6% mAP500-95 and 125 FPS.
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