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Abstract—In indoor environments, walls often limit visibility.
For example, an observer outside a room has a limited view
due to the surrounding walls. We illustrate that this observer,
equipped with a digital camera, can opportunistically exploit the
edges of the room’s doorway—as a computational aperture—to
create a 3D 180-degree (horizontal) field of view reconstruction
of the interior without ever gaining a direct line of sight or using
active illumination. Like other passive, occluder-aided non-line-
of-sight imaging methods, our approach analyzes an intensity
photograph of the shadow cast by the occluder. Still, the state-
of-the-art is limited to 3D reconstructions that assume few
hidden scene objects, each confined to a single depth. However,
our approach enables far greater depth resolution, permitting
accurate reconstructions even when hidden scene objects span
substantial depth extents. To achieve this, we exploit all three
edges of the doorway instead of just one or two orthogonal edges.
This extension requires innovations in hidden scene discretization
and representation based on Fisher information analyses, as well
as advances in reconstruction algorithms to enable coherent,
convergent, and accurate 3D imaging of real experimental scenes
from ordinary 2D photographs.

Index Terms—Non-line-of-sight imaging, computational pho-
tography, corner camera, Fisher information, information orthog-
onality

I. INTRODUCTION

Non-line-of-sight (NLOS) imaging seeks to understand
objects and scenes that are outside the observer’s field of
view (FOV). Without exploitable mirrors nearby, an emerging
approach is to capture the intensity variations of a visible matte
surface diffusely illuminated by the hidden scene.

From this, the ultimate goal is a final representation of the
hidden scene that gives sufficient detail and high accuracy.
This goal is challenging because the problem is ill-posed:
light from the hidden scene scatters indiscriminately in all
directions and combines at the visible surface. Thus, the
relation between the hidden scene and the measured visible
surface illumination is extremely weak. Moreover, seeking
a 3D reconstruction from a single 2D photograph further
exacerbates the difficulty. Prior works have demonstrated
many optical techniques to address these challenges. These
techniques fall into two categories: (i) active methods that
measure back-reflected light from indirect illumination of the
hidden scene using a controlled laser source, and passive
methods that measure existing illumination on a nearby surface
without using any controlled light source. In the former, the
scene reconstructions rely on timing the roundtrip travel of the
laser pulse bouncing off the observation surface, hitting the

hidden scene object, and bouncing back off the observation
surface for several illumination or detection positions [1]–[8].
Thus, they rely on expensive equipment and can have long
acquisition times. In contrast, passive NLOS techniques are
fast and use simple, cheap equipment. Accordingly, advance-
ments in passive NLOS have typically involved exploiting
occluders as functional apertures that encode information of
the hidden scene in the shadows they project on a nearby
visible surface [9]–[27].

Bouman et al. [10] first proposed using an edge occluder
to estimate a 1D angular video of objects moving in the
hidden scene. Seidel et al. extended this approach to enable
2D plan view imaging of a stationary scene relying on a polar
coordinate representation of the hidden scene [16]. In the polar
representation, the azimuthal resolution came from exploiting
the vertical edge, while coarse range resolution came from
subtle variations in intensity caused by radial falloff. Subse-
quent work combined two vertical edges to improve range
accuracy in 2D plan view reconstructions [28]. Other passive,
occluder-aided NLOS setups exploit occluders that are part of
the hidden region. In such settings, the occluder is typically
assumed to be known [13], [14], [23] or unknown and to be
reconstructed [15], [26], [27]. Occluders have also been used
in active imaging to improve reconstructions [6]–[8].

This work builds on previous work [29], which recon-
structed three-dimensional scenes by exploiting an occluder
with two orthogonal edges. In this case, each edge provides
a mechanism for 2D angular resolution pivoting about the
edge, while radial falloff once more provides weak range
information. Thus, a two-step algorithm was used: estimating
shape (parameterized by angles) in the first stage, followed by
estimating ranges for a few clusters of pixels in the second
stage, to account for the ill-conditioned range dimension
and only estimated one range for each object in the scene.
Unfortunately, this approach is limited to scenes where objects
are well separated and each object is approximately at a single
depth. Here, we exploit a third edge to provide resolution
along the third dimension, enabling estimation of the entire
3D scene in a single step. Critically, our approach highlights
the importance of coupling the hidden scene representation
to the angular directions along which each occluding edge
provides resolution. Representing and discretizing the hidden
scene in conventional Cartesian coordinates fails, whereas
our information orthogonal coordinate system yields accurate
reconstructions.
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Fig. 1: Three edge NLOS imaging setup. A hidden region with
unknown objects can be imaged by an observer who cannot see
directly into the room. The observer captures an image of the ceiling,
shown in green. The camera FOV contains shadows of all three edges
of the doorframe.

Fig. 2: Triangular coordinate definition. This plot shows two views
of the 3D scene, from the top and side. A point p can be represented
by Cartesian (x, y, z) or triangular (ϕ1, ϕ2, ψ) coordinates.

We organize the remainder of this manuscript as follows.
Section II shows the formulation of the information orthogonal
coordinate system, the computation of the physical model, and
the method of solving the inverse problem. In Section III, we
show a Cramer-Rao Bound analysis justifying our use of a
three-edge occluder and present results of our reconstruction
algorithm on various real experimental scenes. Finally, Sec-
tion IV provides a brief discussion and concludes the paper.

II. FORWARD & INVERSE PROBLEM

For the NLOS imaging scenario of interest, Figure 1
shows the hidden region, observer, camera FOV, and three-
edge doorway occluder. Objects in the hidden scene emit
or reflect light in all directions; the walls block some light
paths and let others through, creating a soft shadow of the
doorway on the ceiling. The soft shadow, or penumbra, has an
approximately trapezoidal shape with soft edges. An example
is shown in Figure 3 (left). Each edge of the trapezoidal
shadow corresponds to an occluding edge of the doorway,
encoding information regarding the object’s relative angular
position. We demonstrate the methodology for extracting this
information for complex scenes with multiple objects by
formulating an imaging inverse problem.

A. Triangular Coordinate System

We parameterize the hidden region with coordinates
(ϕ1, ϕ2, ψ) where ϕ1 and ϕ2 is the angle about the left
and right edges respectively, and ψ is the angle that pivots
about the horizontal edge. These coordinates are illustrated in
Figure 2 for a point p in the hidden scene. This triangular coor-
dinate system draws inspiration from the coordinate systems
of [28], [29], which also employ a novel coordinate system
that matches the occluder shape. The Fisher information (FI)
matrix indicates the information in a penumbra photograph for
each parameter and any correlation among them (in the off-
diagonal terms). The FI matrix for estimating the position in
Cartesian coordinates of a hidden scene target has appreciable
off-diagonal terms, meaning the x, y, and z coordinates are
strongly correlated. However, the FI matrix in a triangular co-
ordinate parameterization is approximately diagonal, meaning
the estimates are uncorrelated. Thus, errors in one parameter
have a negligible impact on the others.

Converting to this triangular coordinate system from Carte-
sian is achieved via: tan(ϕ1) = y/(x + d), tan(ϕ2) =
y/(x− d) and tan(ψ) = y/z.

Fig. 3: Observed penumbra photograph y (left) and its absolute
derivative |Dy| (right). The derivative image accentuates penumbra
contributions and suppresses approximately constant background.

Fig. 4: Cramer-Rao Bound uncertainty regions for a point in the
middle of the hidden scene. Computed for a one-edge occluder on
the door head (left), a right and top edge occluder (middle), and all
three edges (right).

B. Discrete Forward Model

The forward model is computed by simulating voxels at
evenly spaced (ϕ1, ϕ2, ψ) locations in the hidden scene. We
exclude degenerate positions from our discretization. For a
voxel V with center v0, the light contribution to an observation
pixel P with center p0 and size k × k is evaluated as

L(V, P )=cR(v0, p0)I(v0, p0)

∫
v∈V

∫
p∈P

H(v, p)J dp dv, (1)

where c is the brightness of the voxel, R models the
radial falloff due to the distance between V and P , and J
is the Jacobian for converting from Cartesian to triangular
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Fig. 5: Reconstructions of three scenes. Each reconstruction is a 36 by 36 by 18 discretization. The ground truth scene is shown in the top
right of each plot, and the observation image of the ceiling captured is shown below.

coordinates and is omitted here because of its length. H
represents the light transport matrix between the hidden scene
and the ceiling, returning zero if the light path between v and
p is blocked and one otherwise. By approximating P as an
infinitely small patch with its center p0, we have

L = ck2R(v0, p0)I(v0, p0)
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where p0 = (a,−b,−h), h is the distance between the
doorway head and ceiling, and 2d is the width of the doorway
opening. For small fine discretizations, V has approximately
straight edges, which gives the approximation:

L ≈ ck2R(v0, p0)I(v0, p0)
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where U is the Heaviside step function. An observation
measurement is then simulated at each evenly spaced voxel Vi
and pixel Pi to form a forward model matrix A. The relation

between the hidden scene and the observation image follows
the matrix-vector expression:

y = Ax+Bb+ ϵ, (5)
where x is a vector representing the luminosity of each voxel,
y is the observation image, Bb represents the contribution
from visible-side illumination not affected by occlusions, and
ϵ is noise. Because visible-side illumination is slow-varying,
applying the finite difference operator D approximately can-
cels its effect. Equivalently:

Dy = DAx+DBb+ ϵ, (6)
To solve for x, we formulate an optimization problem,

(x̂, b̂) = argmin
(x,b)

∥D(y − (Ax+Bb))∥22 + λ∥x∥1, (7)

where λ is a tuning parameter that controls the intensity of
the l1 regularization.

III. EXPERIMENTS AND DISCUSSION

A. Cramer-Rao Bound Analysis

We compute and compare the Cramer-Rao Bound (CRB)
for estimating a single hidden target given a measurement that
exploits one, two, and three edges. The CRB gives an upper
bound on the information about a parameter in the measure-
ment. Figure 4 shows the uncertainty regions for the three
cases. The single-edge edge occluder forms a large elliptical
uncertainty region. The two-edge occluder, exploited in [29],
shows the ellipse almost flattening into a line. Previously,
[29] accounted for this direction of low information, i.e., the
length of the line, by including a clustering step that effectively
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reduces the number of ranges to be computed. In the three-
edge case, however, the CRB is a small localized region,
indicating the information present is strong and directionally
balanced. The trend is that increasing the number of edges
encodes more information in the measurement, with the three-
edge case having the most informative measurement.

B. Reconstructions

We evaluate our approach on several real scenes composed
of combinations of objects, such as a chair, a shelf, white-
boards, and a green board. All experimental reconstructions
have a discretization size of 30 by 30 by 15, placing voxels
along 30 ϕ1 positions, 30 ϕ2 positions, and 15 ψ positions.
The angles ψ1 and ϕ2 span 180 degrees, while ϕ values span
atan( ImageLength

h ) to π/2. After forming the discretized grid,
facets with asymptotically large sizes or those that fall outside
the 2 × 2 × 2 meter room were excluded. The scenes shown
are captured from a lab setup, where objects are placed inside
a room with black walls. The observation photograph is of
diffuse white boards attached to the ceiling. Light sources
placed near the ceiling within the scene illuminate the hidden
area but do not contribute to penumbra because the fall in
a region ψ < atan( size(y)h ), such that they do not contribute
directly to the ceiling observation. The lab setup also has white
walls on the visible side that contribute significantly to the
ambient background illumination.

Reconstructions shown in Figure 5 are obtained using
triangular coordinates and the difference operator for three
example scenes. In all three cases, the reconstructions have
accurate color and positional information with minimal clutter.

Furthermore, to demonstrate the importance of the triangular
coordinate system, Figure 6 shows reconstructions obtained
when using the proposed triangular coordinates and conven-
tional Cartesian coordinates representation using the same
measurements. The Cartesian reconstructions fail, showing
many spurious elements and poor color accuracy. By compar-
ison, the triangular reconstructions accurately reconstruct the
objects in the scene with little clutter. We also compared the
impact of using the difference operator to suppress background
in the measurements. The background impression procedure
had little effect on improving the reconstructions.

IV. CONCLUSION

We presented a technique that resulted in an improvement
to three-dimensional passive non-line-of-sight imaging. The
information present in the penumbra drastically increased by
expanding the complexity of the occluder to three edges.
This expansion enabled a complete, single-step reconstruction
algorithm that estimated the hidden scene’s color, shape,
and position information. Our reconstruction is a full 180°
view reconstruction of the objects within the hidden room.
The effectiveness of our approach was evaluated on real
experimental scenes, where ambient light levels and model
mismatch are prevalent, indicating the potential for use in
real-world settings. The experiments shown here use black
walls in the scene to reduce the amount of uninteresting

With differencing D Without differencing

Fig. 6: Four reconstructions of the same scene using four different
reconstruction algorithms: Triangular vs Cartesian coordinates, and
with differencing operator D vs without differencing. The ground
truth image for this scene is shown in the last row of column three
in Figure 5.

light contributing to the observation. However, because this
algorithm can localize the origin of light-emitting objects in
three dimensions, it is feasible that non-black walls could also
be recovered as a part of the reconstruction. Indeed, specular
contributions from the back wall can be seen in a number of
the reconstructions, despite attempts to reduce contributions
from the room’s inner walls.

We suspect that this work approaches a limit regarding
passive NLOS with edge occluders, as adding a fourth edge
will likely yield only marginal improvements. Similar to prior
works, we rely on the Crámer-Rao bound analyses to tailor
the reconstruction pipeline to the occluder shape, which here
is the frame of an open doorway. While this simple occluding
structure yields mathematically tractible expressions for the
CRB, future work will likely entail formulating algorithms
based on numerical CRB computations for more complex
occluder structures with curved edges, volumetric structures,
or unknown occluders. More generally, this work lays the
foundation for determining optimal representations via CRB-
based analyses in occluder-aided computational imaging with
simple occluder geometries and may find utility in imaging
inverse problems.
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