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Abstract—Building surface defect detection plays a crucial role
in structural health monitoring, ensuring the safety and aesthetics
of buildings. Recently, Visual Question Answering (VQA) has
been promising in architecture, especially for inspection automa-
tion and employee training. However, the insufficient pre-training
on architectural knowledge and the limited defect detection
accuracy of Large Multi-modal Models (LMMs) result in poor
performance in multi-modal building surface defect analysis.
Therefore, this paper proposes a two-stage fine-tuning framework
for improving LMMs’ performance in this task. Experiment
results show that our framework significantly enhances the Visual
Question Answering performance in the building surface defect
analysis. Furthermore, our framework enhances the defect detec-
tion accuracy compared to conventional fine-tuning approaches,
which leads to more accurate and reliable multi-modal analysis
responses from the LMMs.

Index Terms—Computer Vision; Large Multi-Modal Model;
Fine-Tuning; Prompt Engineering; Defect Detection

I. INTRODUCTION

As buildings age and experience wear and tear, Structural
Health Monitoring (SHM) becomes crucial for ensuring safety
and aesthetics. One of the most significant SHM approaches
is building surface defect detection.

Building surface defect not only negatively impacts the
building itself (e.g., the aesthetic appeal and lifespan) but also
raise safety risks to the public (e.g., falling debris injuring
pedestrians) [1]. Therefore, timely detection and maintenance
of building surface defects are crucial for both preserving
structural integrity and ensuring public safety.

In the past few years, advancements in computer vision
provided automated approaches for structural defect detection,
particularly those driven by deep learning models [2], [3].
However, it is important to note that deep learning based
defect detection methods can only focus on the visual modality
[4], [5] and cannot conduct multi-modal analysis or provide
knowledge-based insights (e.g., causes, urgency, and repair
strategies). Human inspectors derive only limited information
from them, which is insufficient for addressing the questions
raised in defect assessment reports. Therefore, defect inspec-
tion models would be more practical if they supported open-
ended visual question answering as a VQA system.

In traditional practices, conducting defect-related analysis
often relies on professional engineers’ knowledge, experience,
and intuition. However, the introduction of the VQA system

could transform the landscape. On the one hand, it could
enhance the accuracy and efficiency of building surface defect
inspection; on the other hand, VQA is user-friendly, allowing
novices to conduct defect analysis in complex scenarios [6].

The implementation of VQA often relies on LMMs, which
possess impressive zero-shot capabilities. Despite the success
of LMMs in general domains, applying LMMs to building
surface defect VQA tasks directly presents poor performance
due to the existing challenges: 1) LMMs struggle with accurate
defect object detection [7]. Figure 1 shows the bounding boxes
generated by different LMMs, which either cover only part of
the defect or fail to detect any defects. 2) The knowledge base
of LMMs is limited by the pre-training datasets, particularly
the absence of in-depth knowledge in specialized domains
(e.g., Architecture). This leads to LMMs’ insufficient knowl-
edge to answer analytical questions about detected defects.

Therefore, this paper proposes a cost-effective two-stage
fine-tuning framework for training the domain-specific VQA
assistants. Specifically, we endow LMMs with the capability
for multi-modal building surface defect analysis. In summary,
we make the following contributions:

• We propose a two-stage multi-modal LLM fine-tuning
strategy for building surface defect Visual Question An-
swering. Stage one focuses on defect detection augmenta-
tion, which enhances the LMMs’ limited object detection
capability. In stage two, we concentrate on enhancing
the knowledge base and multi-modal analysis capabilities
regarding detected building surface defects.

• We collect and annotate a dataset of building surface de-
fects with bounding boxes. Plus, by utilizing knowledge
distillation from the proprietary LMM, we construct the
first multi-modal instruction-following dataset focused on
defect analysis.

• We fine-tune several open-source LMMs under our two-
stage fine-tuning framework. The experimental results
show that our framework significantly improves the multi-
modal defect analytic performance. Furthermore, com-
pared to the conventional fine-tuning method, our frame-
work particularly enhances defect detection accuracy.
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(a) Detected by GPT-4o [8] (b) Detected by LLaVA [9]

Fig. 1: LMMs give deviated defect detection results because
of mentioned challenges

II. RELATED WORK

A. Vision-based surface defect detection

Research on vision-based surface defect detection tasks
primarily relies on deep learning-based approaches. The com-
mon tasks in deep learning-based computer vision include
classification, object detection, and segmentation, which ad-
dress visual data at the image level, object level, and pixel
level, respectively. In the context of vision-based building
surface defect detection, most research works consider the
task as object detection [10]. Cha et al. [11] proposed a faster
region-based CNN (Faster R-CNN) for structural visual defect
detection of multiple types in quasi-real time. Wei et al. [12]
proposed a building facade defect detection method based on
the You Only Look Once (YOLO) model, which is renowned
for its high speed and accuracy.

B. Knowledge distillation

Knowledge Distillation (KD) is a model compression tech-
nique that enhances the performance of a smaller, simpler
“student mode” by transferring knowledge from a larger, more
complex “teacher model [13].” With the rapid development
of open-source LLMs, KD has become a popular technology
for transferring in-depth knowledge from leading proprietary
LLMs to other open-source LLMs.

The widespread application of knowledge distillation is
primarily due to the limitations of proprietary LLMs: 1)
Limited accessibility and high costs. Proprietary LLMs
like GPT-4 [8] and Gemini [14] often require usage fees
and have regional access restrictions, making them difficult
for individuals to access. 2) Data privacy and security
concerns. Accessing proprietary LLMs requires sending data
to external servers, raising concerns about data privacy and
security, especially for users handling sensitive data [15]. 3)
Adaptability limitations. While proprietary LLMs exhibit
strong general capabilities, they may not perform as well
as specialized models for specific tasks. Consequently, the
limitations in accessibility, cost, privacy, and adaptability are
causing the development of model distillation to train more
powerful open-source LLM [13].

III. METHODOLOGY

A. Two-Stage Fine-Tuning Framework for Multi-modal Defect
Analysis

In this work, we propose a two-stage fine-tuning framework
to specifically adapt LMMs for multi-modal building surface
defect analysis. This framework emphasizes improving defect
detection accuracy before achieving improved performance
in domain-specific VQA tasks. The motivation is to prevent
LMMs from analyzing incorrectly detected or entirely nonex-
istent defects due to their hallucinations.

The limited object detection performance of LMMs on atyp-
ical objects (e.g., defects) significantly impacts the accuracy of
VQA responses. Typically, VQA development involves fine-
tuning LMMs using a visual question-answer pairs dataset
and performing a one-stage tuning scheme [16]. However,
defect detection accuracy is considerably compromised due to
the poor object detection capability. Besides, general-purpose
LMMs are not adequately equipped to understand specialized
defects and their visual features. Therefore, the models trained
by typical fine-tuning schemes cannot accurately identify
defects and their locations, significantly constraining the cred-
ibility of the generated responses.

Our two-stage fine-tuning framework is designed to over-
come such limitations. In the first stage, we focus on aug-
menting the defect object detection performance (as shown in
Figure 2a). The prompt-completion pairs used in this stage
consist of template questions and corresponding completions
regarding the defect types and corresponding bounding box
coordinates. In the second stage, we focus on enhancing the
model’s multi-modal defect analysis capabilities (as shown in
Figure 2b). Based on the intermediate fine-tuned model after
stage one, which already possesses improved defect detection
capabilities, we further fine-tune it to learn expert knowledge
related to defects. For the prompt-completion pairs, we design
the prompt template containing VQA questions. Furthermore,
to generate exemplary VQA answers, we propose a knowledge
distillation pipeline to extract knowledge from the proprietary
LMM cost-effectively.

This two-stage fine-tuning architecture not only adapts
LMMs to support multi-modal defect analysis tasks within
the VQA formats but also enhances the accuracy of defect
detection for more precise responses.

B. Parameter-Efficient Fine-tuning (PEFT)

Due to the large number of trainable parameters in LMM
(for instance, an LMM of 7B contains approximately 7 billion
trainable parameters), performing full parameter fine-tuning
brings significant computation and time costs. Therefore, to
achieve an efficient tuning process within a shorter timeframe
and lower computational costs, we employ low-rank adap-
tation (LoRA) for fine-tuning. The key idea of LoRA is to
freeze the pre-trained model weights and inject trainable rank
decomposition matrices into each layer of the Transformer
architecture [17]. Therefore, Lora significantly reduces the
number of trainable parameters, making the training process
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Stage 1: Augmentation of defect object detection performance

Building Surface 
Defect Detection 

Dataset

LoRA 
Fine-tuning

Prompt:
<image>\n Analyze the uploaded image of a building surface to detect defects. 
The image may include the following defect types: 'exposed reinforcement', 
'rust stain', 'crack', 'spalling', 'efflorescence', and 'delamination'.
Please identify all defects and draw bounding boxes around each. Then, output 
the detected defect types along with the bounding box coordinates.
{Bounding box format explanation}

Crack 
[0.3296, 0.3710, 
0.2625, 0.3484375]
Spalling 
[0.4992, 0.7359, 
0.9984, 0.4375]

LMM
(Native version)

LMM
(Intermediate

version)

(a) Stage 1: Augmentation of defect object detection performance

Stage 2: Augmentation of defect analysis performance in VQA

Synthetic Defect 
Analysis VQA 

Dataset.

LoRA 
Fine-

tuning

Prompt:
<image>\n Given the defects:
<defect_type>: <coordinates>
{Bounding box format explanation}.
Please analyze the defects, and 
provide detailed answers to the 
following question: <Question Ex.>

LMM
(VQA version)

Question
Pool

Question Example: 
Provide detailed 
repair and
maintenance 
recommendations 
for the building 
surface, including 
suggested materials, 
techniques required.

Crack Repair
- Structural Cracks: Use epoxy injection. 

Clean and dry the crack first.
- Non-Structural Cracks: Apply a flexible 

sealant after cleaning the area. 
Spalling Repair
- Remove loose material and clean the 

surface. Apply repair mortar as per 
instructions and ensure proper curing. 
Consider a protective coating afterward. 
Additional Considerations
Use preventive measures like proper 
drainage and regular inspections. Consult 
a structural engineer for extensive issues.

LMM
(Intermediate

version)

(b) Stage 2: Augmentation of defect analysis performance in VQA

Fig. 2: Two-Stage Fine-Tuning framework

more efficient and cost-efficient. In our experiment, we fine-
tune LMM using LoRA in a generative manner, as shown in
Equation 1:

L(θ) = −
T∑

t=1

logPθ(yt|x, y<t) (1)

where θ represents the LoRA trainable parameters, T is the
output sequence length, and Pθ(yt|x, y<t) is the probability
of the model with parameters θ generating a token yt given
the context x and all previous tokens y<t. In this generative
approach, the output at time step t is conditioned only on the
previous time steps (< t).

C. Knowledge Distillation from Proprietary LLM

The lack of visual question-answering datasets regarding
building defects has limited the development of the VQA sys-
tem. To bridge the gap, we propose a knowledge distillation-
based pipeline for generating a multi-modal instruction-
following dataset from proprietary LMMs and use it for visual
instruction tuning.

Before the knowledge distillation process, we need to select
a qualified “teacher model.” Firstly, by referring to various
building surface defect inspection report templates, we design
a set of questions that most inspectors are concerned with,
forming a question pool. Next, we randomly select questions
from the question pool and input them into several proprietary
LMMs. Subsequently, we evaluate the generated answers

based on industry standards. Ultimately, we selected GPT-
4o [8] as the “teacher model” because of the outstanding
performance of its responses.

In the knowledge distillation process, we extract the building
surface defect image and the corresponding labels first. Sub-
sequently, we select questions from the question pool and add
them to the default visual instruction prompts. Then we input
both images and prompts into GPT-4o, followed by collecting
the generated responses as exemplary answers. An example of
this process is illustrated in Figure 3.

IV. EXPERIMENT

A. Experimental Setting
1) Dataset Statistics: Based on the different focuses in the

two stages (as discussed in §III-A), we organize two datasets:
1) the Building Surface Defect Detection Dataset and 2) the
Multi-modal Defect Analysis VQA Dataset.

Building Surface Defect Detection Dataset. We manually
collect and annotate a dataset comprising 7,353 images of
building surface defects, each with a size of 640 pixels by 640
pixels. It includes six distinct visible defect types. All images
are annotated by qualified building defect inspectors, with
labels of the defect types and the corresponding bounding box
coordinates in YOLO format. The distribution of the defect
types in the dataset is shown in Table I.

In our experiments, we randomly select 80% (5,882 images)
of the dataset as the training set and the remaining 20% (1,471
images) as the test set.
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You are an architecture expert specialized in 
detecting and analyzing building surface 
defects.

<image> Analyze an image of a building 
surface, which includes the following defect 
types and their respective coordinates in 
YOLO format:
{Defect type}: {YOLO format coordinates}

{Example question}: Identify the potential 
causes for each defect.

GPT-4o

Role Identification

Defect Type and Coordinates

Defect Analysis VQA question

User

Possible Causes:
- Corrosion of Reinforcement: The most common cause 

is the corrosion of steel reinforcement, which expands and 
causes the concrete to crack and spall.

- Poor Concrete Cover: Insufficient concrete cover over 
the reinforcement can lead to exposure.

- Water Ingress: Water penetration can accelerate 
corrosion and lead to spalling.

- Freeze-Thaw Cycles: In colder climates, freeze-thaw 
cycles can exacerbate cracking and spalling.

Fig. 3: An example of knowledge distillation from GPT-4o [8]

TABLE I: The distribution of six visible defect types in dataset

Defect Types Number of Images 1 Proportion
Exposed reinforcement 3309 45.00%

Rust stain 2362 32.12%
Crack 3933 53.49%

Spalling 2568 34.92%
Efflorescence 1848 25.13%
Delamination 746 10.15%

Total 7353 100%
1 An image can contain multiple defect types.

Multi-modal Defect Analysis VQA Dataset. This Dataset
is constructed based on the 5,882 images (i.e., training set)
from the Building Surface Defect Detection Dataset. Through
knowledge distillation, the “teacher model” GPT-4o generates
exemplary answers in five distinct perspective questions for
each image. Figure 4 shows the token count distribution for
GPT-4o’s responses to five perspective questions. Then, we
combine the images with GPT-4o’s exemplary responses to
construct the dataset.

2) Implementation Details: The fine-tuning process utilizes
two NVIDIA® GeForce RTX™ 4090 GPUs, each with a mem-
ory capacity of 24 GB. For each selected open-source LMM,
we employ our designed two-stage fine-tuning framework for
one epoch.

3) Baselines: To evaluate the performance of our two-stage
fine-tuning framework, we compare the LMMs tuned by our
framework against direct prompting of LMMs and conventional
fine-tuned LMMs. In our experiment, the open-source LMMs
include LLaVA-v1.5-7B [9] and Qwen-VL (Qwen-7B) [18],
while the proprietary LMMs include Gemini 1.5 Pro [14], and
GPT-4o–2024-08-06 [8].

Fig. 4: Distribution of token counts for generating answers to
five distinct perspective questions

[Instruction]
Please act as an impartial judge, reference the exemplary answers, and 
evaluate the quality of the response provided by the AI assistant to the 
user question displayed below. Your evaluation should consider factors 
include the helpfulness, relevance, accuracy, depth, creativity, and 
level of detail of the response. Begin your evaluation by providing a 
short explanation. Be as objective as possible. After providing your 
explanation, please rate the response on a scale of 1 to 10 by strictly 
following this format: “[[rating]]”
{Question}: {Exemplary answer}
[The Start of Assistant's Answer]{answer}[The End of Assistant's Answer]

Fig. 5: The default prompt for “observer model” as a judge

4) Evaluation Metrics: Based on the different enhancement
targets of the two stages, we use different metrics to evaluate
separately:

Defect Object Detection. First, we evaluate the target
emphasized in the first stage: the capabilities of defect object
detection. It is important because the premise of meaningful
visual question-answering is accurately detecting the defect
types and locations within an image. To evaluate it, we utilize
Precision, Recall, and F1-Score metrics, which are standard
in object detection tasks. The evaluation process involves
calculating the Intersection over Union (IoU), which is the
ratio of the intersection area of two bounding boxes to their
union area. This metric measures how closely the predicted
results align with the ground truth. In our experiment, we set
a predefined IoU threshold of 0.5.

Defect Analysis VQA. To compare the performance in the
defect analysis VQA task, we employ an “observer model
(Llama 3.1 [19])” as a judge to evaluate the responses by
different LMMs. The “observer model” should reference the
exemplary answers and assign a score ranging from 1 to 10
to assess the quality of the generated responses, with a higher
score indicating superior performance. The default prompt for
the judge is shown in Figure 5 [20].

B. Result and Discussion

To evaluate the performance of our framework across dif-
ferent LMMs, we utilize a test set comprising 1,471 images
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TABLE II: Performance evaluation in defect object detection, measured by Precision (P), Recall (R), and F1-score (F1).

Direct Prompting Conventional Fine-tuning Two-stage Fine-tuning
Models

P R F1 P R F1 P R F1
Gemini 1.5 Pro [14] 4.62% 3.67% 3.96%

Proprietary LMMs
GPT-4o–2024-08-06 [8] 4.86% 3.83% 3.99%

N/A N/A

LLaVA-v1.5-7B [9] 2.33% 1.84% 1.76% 40.67% 34.76% 37.22% 43.42% 39.80% 39.24%
Open-source LMMs

Qwen-VL (Qwen-7B) [18] 3.68% 2.66% 2.92% 41.21% 36.11% 37.67% 44.14% 36.21% 37.70%

TABLE III: Performance evaluation in defect analysis VQA,
measured by score graded by the “observer model”

Models LLaVA [9] Qwen [18] Gemini [14]
Direct Prompting 5.2 6.0 7.8
Conventional Fine-tuning 6.7 7.2 N/A
Two-stage Fine-tuning 7.1 7.5 N/A

that were not seen by any participating LMMs during the
fine-tuning process. We follow the evaluation metrics defined
in §IV-A4. Furthermore, the metrics calculation involves av-
eraging the metrics across all test samples to compare our
selected open-source LMMs with proprietary LMMs under
three conditions: 1) direct prompting without fine-tuning,
2) under the conventional fine-tuning approach, and 3) our
proposed two-stage fine-tuning framework. The comparison is
conducted across two tasks: 1) defect object detection and 2)
defect analysis in VQA.

As shown in Table II, the open-source LMMs fine-tuned
by our two-stage framework achieve optimal performance
in the defect object detection task, surpassing proprietary
models such as GPT-4o and Gemini 1.5 Pro, as well as those
fine-tuned using the conventional approach. Furthermore, as
illustrated in Table III, open-source LMMs fine-tuned by
our two-stage framework achieve higher scores compared to
direct prompting and conventional fine-tuning approach in the
defect analysis VQA task, exhibiting exceptional capabilities
in multi-modal defect analysis. Moreover, the two-stage fine-
tuned Qwen’s average score is comparable to proprietary
LMMs Gemini 1.5 pro, which demonstrates their robust multi-
modal analysis abilities and in-depth knowledge base.

V. CONCLUSION

This paper proposes a two-stage fine-tuning framework
designed for tuning open-source LMMs specifically for multi-
modal building surface defect analysis. Through knowledge
distillation and Low-Rank Adaptation fine-tuning, we effec-
tively fine-tuned selected LMMs at a low cost and within a
short timeframe. Furthermore, our two-stage design signifi-
cantly enhances the performance of LMMs in defect detection,
which in turn improves the accuracy and credibility of VQA
responses. We believe that our work could provide new
insights for the development of domain-specific, multi-modal
analytic question-answering systems.
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