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Abstract—Potential contrast is typically used as an image qual-
ity measure and quantifies the maximal possible contrast between
samples from two classes of pixels in an image after an arbitrary
grayscale transformation. It has been applied in cultural heritage
to evaluate multispectral images using a small number of labeled
pixels. In this work, we introduce a normalized version of
potential contrast that removes dependence on image format and
also prove equalities that enable generalization to more than
two classes and to continuous settings. Finally, we exemplify
the utility of multi-class normalized potential contrast through
an application to a medieval music manuscript with visible
bleedthrough from the back of the page. We share our implemen-
tations, based on both original algorithms and our new equalities,
including generalization to multiple classes, at https://github.com/
wallacepeaslee/Multiple-Class-Normalized-Potential-Contrast.

Index Terms—Potential Contrast, Contrast Measure, Image
Quality, Cultural Heritage, Image Analysis, Multi-Class Segmen-
tation

I. INTRODUCTION

Potential contrast (PC) is a task-dependent image contrast
and quality measure. It involves binarizing an image based on
labeled pixels from two classes, typically called the foreground
and background, which are usually selected manually for
a particular task. PC then measures the maximal contrast
possible between the labeled pixels from each class after an
arbitrary grayscale transformation [1].

The most prominent successes of PC so far have been in ap-
plications to cultural heritage, especially multispectral images
of degraded writing. In particular, areas where ink is present
(foreground) and absent (background) are labeled. Then PC is
computed for each band in a multispectral image using pixels
from labeled regions to determine which band(s) may contain
the most relevant information. This process is described with
more detail in [2] and [3], where PC was applied to ostraca
(potsherds with writing), and further explored in [4]–[6].

A primary property of PC is its invariance under invertible
grayscale transformations, which can account for limitations in
human perception like the relative difficulty of evaluating the
quality of bright images according to the Weber-Fechner Law
[1], [7]. For example, an image I may appear to show writing
more poorly than another image J , when in reality I contains
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valuable information and shows writing much more clearly
after remapping the grayscale values e.g. adjusting brightness
or contrast. In that sense, PC does not necessarily correspond
to visual perception quality, but rather measures the quality of
underlying information.

In this paper, we introduce the notion of normalized po-
tential contrast (NPC), which is based directly on PC, but
is commensurate across applications as it does not vary with
image format and is interpretable as an accuracy rate of a
binary classifier. We prove that NPC is equivalent to the total
variation distance [8] between the distributions of sampled
foreground and background pixels, enabling generalization to
continuous contexts.

We also introduce new equalities for NPC that can make
computation simpler and provide alternate interpretations of its
value. One of these equalities allows us to define multi-class
NPC, generalizing the notion of NPC to more than two classes.
Instead of binarizing an image, multi-class NPC segments an
image by class. This is useful for several problems arising
in cultural heritage including palimpsest, bleed-through, the
presence of multiple pigments, and other situations commonly
encountered in historical manuscripts.

Lastly, we provide code for PC, NPC, and their multiple-
class generalizations at https://github.com/wallacepeaslee/
Multiple-Class-Normalized-Potential-Contrast. We include
implementations following the algorithms described in [2], [3]
as well as implementations using our equalities from Section
III.

This paper is structured as follows. In Section II, we define

Fig. 1. (Left) An example image, where labeled background pixels are shown
in blue and labeled foreground pixels are in yellow. (Right) The binarization
resulting from potential contrast, with a value of 254.983 for an 8-bit image,
and a normalized potential contrast value of 0.996.
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NPC and demonstrate some of its advantages. In Section
III, we introduce equalities that enable generalizations of
NPC. In Section IV, we define multi-class NPC. Finally, an
example application to bleedthrough in historical manuscripts
is explored in Section V.

II. POTENTIAL CONTRAST & NORMALIZATION

We define potential contrast (PC) based on [1]. Let A =
(a1, . . . , an) and B = (b1, . . . , bm) be labeled foreground and
background pixel values, taken from an image with values
from a set X ⊂ R. We assume throughout this work that 1 <
|X|< ∞, i.e. the image is not constant and is finite. A measure
of contrast, ‘Clayness Minus Inkiness’ (CMI), introduced and
used to analyze historical documents in [9], is given by

CMI(A,B) = µ[A]− µ[B],

where µ[A] denotes the (discrete) mean of sampled foreground
pixels and, similarly, µ[B] denotes the mean of sampled
background pixels. Additionally, denote the set of functions
from a set X to itself by G(X) = {g : X → X}. Then, for
a given g ∈ G(X), we define g(A) and g(B) as the sampled
foreground and background pixels after applying g. Therefore,
if A = (a1, . . . , an) ∈ Xn, then g(A) = (g(a1), . . . , g(an)) ∈
Xn. Following [1], potential contrast can be defined as

PCX(A,B) := max
g∈G(X)

CMI(g(A), g(B)). (1)

Throughout this work, we use PA to denote the discrete
distribution, i.e. the relative histogram of values, in A, and
likewise for PB . So,

∑
x∈X PA(x) =

∑
x∈X PB(x) = 1 and

0 ≤ PA(x), PB(x) ≤ 1 for any x ∈ X . A solution for Eq. 1,
namely an optimal grayscale transformation, is the binarization
given in Proposition 1 of [1]:

goptA,B(x) =

{
max(X) if PA(x) ≥ PB(x)

min(X) if PA(x) < PB(x).
(2)

Here, the definition of PC and its solution relies on the set X ,
which corresponds to an image’s data type. To remove this
dependence, we introduce a normalized version of PC.

Definition 1. Let Y be the set of values that occur in either A
or B. Let H(A,B) = {h : Y → {0, 1}}. Then, the normalized
potential contrast is given by

NPC(A,B) := max
h∈H(A,B)

CMI(h(A), h(B)) (3)

Following an argument analogous to that of Proposition 1 of
[1], an optimal hopt

A,B ∈ argmaxh∈H(A,B) CMI(h(A), h(B))
is the binarization

hopt
A,B(y) =

{
1 if PA(y) ≥ PB(y)

0 if PA(y) < PB(y).
(4)

The manner in which PC relies on the range of values of an
image format is formalized by the following lemma.

Lemma 2. For any injective function f : X → T ⊂ R (with
T finite),

PCT (f(A), f(B)) =
max(T )−min(T )

max(X)−min(X)
PCX(A,B).

Proof. For brevity, let x̄ = max(X),
¯
x = min(X),

t̄ = max(T ), and
¯
t = min(T ). Additionally,

let g1 ∈ argmaxg∈G(X) CMI(g(A), g(B)) and
g2 ∈ argmaxg∈G(T ) CMI((g ◦ f)(A)), (g ◦ f)(B)) as
defined in Eq. 2.

Pixels in A are mapped to either x̄ or
¯
x by g1. Let #Amax

be the fraction of pixels in A mapped to x̄ and let #Amin be
the fraction of pixels mapped to

¯
x by g1. Note that #Amax+

#Amin = 1. The proportions of pixels in A mapped to t̄ and
¯
t

by g2 ◦f are also #Amax and #Amin. To see this is the case,
recall that g1 and g2 are constructed as in Eq. 2, so g1(ai) = x̄
implies PA(ai) ≥ PB(ai); because f is injective, it follows
that Pf(A)(f(ai)) ≥ Pf(B)(f(ai)) and hence (g2 ◦f)(ai) = t̄.
Analogously, g1(ai) =

¯
x implies (g2 ◦ f)(ai) =

¯
t.

As above, let #Bmax and #Bmin be the fractions of pixels
in B mapped to x̄ and

¯
x by g1 or, equivalently, to t̄ and

¯
t by

g2 ◦ f . Then,

PCX(A,B) = µ[g1(A)]− µ[g1(B)]

= x̄(#Amax) +
¯
x(#Amin)− (x̄(#Bmax) +

¯
x(#Bmin)) .

Similarly, we have PCT (A,B) = t̄(#Amax) +
¯
t(#Amin) −

(t̄(#Bmax) +
¯
t(#Bmin)). So, (x̄−

¯
x)PCT (f(A), f(B))−(t̄−

¯
t)PCX(A,B) = (x̄

¯
t −

¯
xt̄)(#Amax + #Amin − #Bmax −

#Bmin) = 0 because #Amax+#Amin = #Bmax+#Bmin =
1, completing the lemma.

In particular, this lemma shows that PC scales linearly with
the range of values in X , which is typically defined by the
image format. For example, an 8-bit image usually consists
of integer values {0, 1, . . . , 255}, which is the setting for the
original definition of PC. A 16-bit image might have values
from {0, . . . , 216−1}, in which case conversion to this format
would change the PC by a factor of 216−1

28−1 . Or, if the 16-bit
image is restricted to have values between 0 and 1, conversion
would change PC by a factor of 1/255.

III. PROPERTIES & EQUALITIES FOR NPC

Lemma 2 shows how PC scales with the range of values
given by an image format. An analogous statement for NPC
shows its invariance to the image format.

Lemma 3. For any injective f : X → T ⊂ R, it holds that

NPC(f(A), f(B)) = NPC(A,B).

Proof. Let Y be the set of values in A or B. If hopt
A,B ∈

argmaxh∈H(A,B) CMI(h(A), h(B)) and hopt
f(A),f(B) ∈

argmaxh∈H(f(A),f(B)) CMI((h ◦ f)(A), (h ◦ f)(B)) as
defined by Eq. 4, then hopt

A,B(y) = (hopt
f(A),f(B) ◦ f)(y) for

all y ∈ Y . So, µ[hopt
A,B(A)] = µ[(hopt

f(A),f(B) ◦ f)(A)] and
µ[hopt

A,B(B)] = µ[(hopt
f(A),f(B) ◦ f)(B)], which proves the

lemma.
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A corollary of Lemma 2 gives an equivalent formulation for
NPC in terms of PC with the appropriate rescaling.

Corollary 4. Given an image with values from X , it holds
that

NPC(A,B) =
PCX(A,B)

max(X)−min(X)
.

Proof. Apply Lemma 2 with f(x) = x−min(X)
max(X)−min(X) . Be-

cause f is injective, PCf(X)(f(A), f(B)) = PCX(A,B)
max(X)−min(X). .

Since min(f(X)) = 0 and max(f(X)) = 1 we see that
PCf(X)(f(A), f(B)) = NPC(A,B).

This proof shows that NPC is directly equivalent to nor-
malizing an image with f(x) = s−min(X)

max(X)−min(X) , and then
computing PC. Because of the direct relationship between PC
and NPC, many of the observations in [1] also hold for NPC
(e.g. symmetry in arguments A and B or the fact that NPC can
be considered an equivalence relation among images). While
PC is always in the range [0,max(X) − min(X)], NPC has
values in [0, 1].

Because of its beneficial properties, we use NPC for the
remainder of this paper. However, analogous results for PC can
be obtained with the appropriate scaling according to Corollary
4.

Next, we prove some equalities for NPC, including its
equivalence to the total variation distance [8] between proba-
bility measures, which we denote by δtv(PA, PB), thinking of
PA and PB as probability mass functions. In discrete cases like
ours, δtv(PA, PB) can be defined as an ℓ1 distance between
PA and PB , i.e.

δtv(PA, PB) :=
1

2
∥PA(x)− PB(x)∥1

:=
1

2

∑
x∈X

|PA(x)− PB(x)| .

This equality and our other equalities characterizing NPC are
summarized in the following theorem.

Theorem 5. Given A and B, with associated distributions PA

and PB defined on some set X (containing all values present
in A and B), it holds that

NPC(A,B) = 1−
∑
x∈X

min(PA(x), PB(x)) (5)

=
∑
x∈X

max(PA(x), PB(x))− 1 (6)

=
1

2
∥PA(x)− PB(x)∥1 (7)

= δtv(PA, PB). (8)

Proof. From Eq. 4, we can write hopt
A,B(x) = 1[(PA)(x) ≥

(PB)(x)], where 1 is the indicator function. With this notation,

µ[hopt(A)] =
∑
x∈X

PA(x)1[PA(x) ≥ PB(x)],

and likewise for µ[hopt(B)]. For brevity, we will use the
notation MA,B(x) = max(PA(x), PB(x)) and mA,B(x) =

min(PA(x), PB(x)). For any given x ∈ X , whether PA(x) ≥
PB(x) and PA(x) < PB(x), it holds that

(PA(x)− PB(x))1[PA(x) ≥ PB(x)] = PA(x)−mA,B(x).

Applying this to the definition of NPC yields Eq. 5 as follows:

NPC(A,B) =
∑
x∈X

(PA(x)− PB(x))1[PA(x) ≥ PB(x)]

= 1−
∑
x∈X

mA,B(x).

Similarly,

NPC(A,B) = 1−
(∑

x∈X

mA,B(x) +
∑
x∈X

MA,B(x)−
∑
x∈X

MA,B(x)

)
= 1−

(
2−

∑
x∈X

MA,B(x)
)

=
∑
x∈X

MA,B(x)− 1.

Using the fact that

MA,B(x)−mA,B(x) = |PA(x)− PB(x)|, (9)

we can show that

NPC(A,B) = 1−
∑
x∈X

mA,B(x)

= 1−
∑
x∈X

(
MA,B(x)− |PB(x)− PB(x)|

)
= 1 +

1

2
∥PA(x)− PB(x)∥1

−
∑
x∈X

(
MA,B(x)−

1

2
|PA(x)− PB(x)|

)
.

To obtain Eq. 7, we prove that the second term in the last
equality above is equal to 1 by again applying Eq. 9, i.e.

1 =
∑
x∈X

(1
2
MA,B(x) +

1

2
mA,B(x)

)
=

∑
x∈X

(
MA,B(x)−

1

2
|PA(x)− PB(x)|

)
.

Alternatively Eq. 7 also follows from Eq. 5 using Scheffé’s
Theorem [8], [10].

The final equality given by Eq. 8, i.e.equivalence to the total
variation distance, follows from its definition, taking PA and
PB to be appropriate probability mass functions.

Each equality of Theorem 5 gives insight about NPC.
First, Eq. 5 reflects an interpretation of NPC as an accuracy
rate. In particular, we can consider hopt

A,B from Eq. 4 as a
binary classification function. Then, the fraction of pixels
in A that are incorrectly classified as belonging to class B
is eA :=

∑
x∈X PA(x)1(PA(x) < PB(x)). With a similar

expression for eB , the fraction of pixels from B that are
misclassified as belonging to A, we see that eA + eB =∑

x∈X min(PA(x), PB(x)). So, the accuracy of our binary
classification is NPC(A,B) = 1−eA−eB . The conception of
PC in this way first appeared in [1], where a similar argument
described PC in terms of error estimation, with an optimal
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Fig. 2. Left: The example image from Figure 1, now with three different
classes labeled. Labels for one ink are in yellow, for a second ink are in
orange, and for the background are in blue. Top Right: a multi-class NPC
result, where the colors reflect the class segmentation. The multi-class NPC
has a value of 0.885.

binarization minimizing the rate of false positives and false
negatives (eA and eB above). In that setting, the rate was
multiplied by 255 due to the 8-bit images being used, directly
corresponding to the scaling between PC and NPC.

The second equation of Theorem 5, Eq. 6 is used later in
Section IV to generalize NPC to multiple sources.

Third, Eq. 7 gives a potentially faster way of computing
NPC than the 4-step algorithms of [1], [2]. We can directly
compute (and normalize) the histograms of values for A and
B before taking their difference, giving a time complexity
of O(|A|+|B|+|X|). This is similar to the time complexity
as in [1] when |X| is considered constant. However, by
not computing the mean µ[goptA,B(A)] and µ[goptA,B(B)], we
avoid iterating over A and B a second time and can reduce
computation.

Finally, the equivalence to total variation in Eq. 8 is useful
beyond proving that NPC (and PC) is a metric. Most impor-
tantly, NPC can instead be defined as a total variation distance,
which allows us to extend NPC to the continuous case by
setting NPC(A,B) = δtv(PA, PB) when PA and PB are
defined on continuous domains. The total variation distance
is a special kind of integral probability metric, which has the
more general structure

DF (PA, PB) = sup
f∈F

|EY∼PA
f(Y )− EZ∼PB

f(Z)| .

This difference of means is also in the definition NPC with
the difference µ[h(A)]−µ[h(B)]. The total variation distance
is the integral probability metric with F = {f : X → {0, 1}},
mirroring the functions contained in H(A,B).

IV. MULTI-CLASS NORMALIZED POTENTIAL CONTRAST

A generalized multi-class NPC allows us to compute NPC
when more than two classes are present. This could arise in
various contexts, e.g. manuscript bleedthrough, palimpsest, or
many different inks. Given n classes, NPC could be applied
to all

(
n
2

)
pairs, yielding

(
n
2

)
values and binarizations. Alter-

natively, for cases where interpreting all of these relationships
simultaneously is of interest, we extend NPC to multiple
classes by generalizing Eq. 6 from Theorem 5.

Given n classes, we denote Ai = (a1, . . . , ami
) as labeled

samples for a class i ∈ {1, . . . , n}, each with a discrete
distribution PAi .

Definition 6. We define the multi-class NPC of A1, . . . An as

NPC(A1, . . . , An) :=
−1 +

∑
x∈X max1≤i≤n PAi(x)

n− 1
. (10)

The scaling ensures that NPC(A1, . . . , An) ∈ [0, 1]. For
pixel-wise segmentation, we assign a pixel with value x to
the class Ai when i ∈ argmax1≤i≤n PAi(x), i.e. to the class
that has the highest fraction of its sampled pixels at that value
x. An example of such a segmentation is given in Figure 2.
We also note that multi-class PC can be defined by scaling
multi-class NPC like in the two-class case:

PC(A1, . . . , An) := (max(X)−min(X))·NPC(A1, . . . , An).

We can now state an analog of Theorem 5 for multi-class NPC.

Theorem 7. Suppose we have n classes with sampled pixels
Ai and distributions PAi

defined on X . For a given x ∈ X ,
let P

A
(i)
x

be a reordering of PAi
from smallest to largest,

i.e. min1≤i≤n PAi
(x) = P

A
(1)
x
(x) ≤ P

A
(2)
x
(x) ≤ . . . ≤

P
A

(n)
x

(x) = max1≤i≤n PAi(x). Then,

NPC(A1, . . . , An) = 1− 1

n− 1

∑
x∈X

n−1∑
i=1

P
A

(i)
x

(x) (11)

=
1

n

∑
x∈X

n−1∑
i=1

(P
A

(n)
x

(x)− P
A

(i)
x

(x)). (12)

The proof is similar to Theorem 5. We note that Eqs. 10,
11, and 12 are analogs of Eqs. 6, 5, and 7 respectively.

Additionally, we can rewrite Eq. 12 as

NPC(A1, . . . An) =
n− 1

n

∑
x∈X

(
P
A

(n)
x

(x)−
1

n− 1

n−1∑
i=1

P
A

(i)
x

(x)

)
.

We can interpret this as mean, across each possible value x,
of the difference between the distribution with largest fraction
of pixels that have value x and the average of the remaining
distributions.

We can also interpret multi-class NPC as an accuracy rate
similarly to Section III. In particular, if ei gives the proportion
of pixels from Ai that are misclassified as belonging to a
different class j ̸= i, then

NPC(A1, . . . , An) = 1−
n∑

i=1

ei.

This follows from Eq. 11, since the sum
∑n−1

i=1 P
A

(i)
x

gives
an error rate across all classes for a pixel value x, because
our pixel-wise classification will assign x to class i if PAi

is
maximal (among all distributions evaluated at x).

V. APPLICATION

To illustrate the utility of multi-class NPC, we apply it
to photographed page from the Caius Choirbook (GB-CGC
667/760), a music manuscript dated to the late 1520s and
currently at Gonville and Caius College, Cambridge [11]. Like
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Fig. 3. (Top) A grayscale image showing an excerpt from GB-Cgc 667/760,
page 19, with foreground notation (red), bleedthrough (green), and background
(blue) labeled. (Middle) A three-class NPC result with foreground in black,
bleedthrough in gray, and background in white. The three-class NPC value is
0.965. The two-class NPC between foregreound notation and background is
nearly 1, the two-class NPC between foreground and bleedthrough is 0.996,
and the two-class NPC between bleedthrough and background is 0.934. (Bot-
tom) The three-class NPC segmentation showing only foreground notation.
Original imaging by DIAMM (diamm.ac.uk). Image use by kind permission
of the Master and Fellows of Gonville and Caius College, Cambridge.

many historical manuscripts, this choirbook exhibits substan-
tial bleedthrough, showing ink from the back of the page as
well as the front. We apply NPC with three classes: written
notation on the open page, bleedthrough, and background. The
result, shown in Figure 3, is a strong multi-class NPC value,
suggesting that the labeled pixels are easily separated based
only on their intensity values. This is reflected in the segmen-
tation, where foreground text is easily isolated, allowing us
to remove the bleedthrough from the page and visualize the
music without undesired noise from the background.

The two-class NPC values also reflect what we expect: the
foregrorund is easy to separate from background and from
bleedthrough, but separating background from bleedthrough is
more difficult. However, for many applications a single value
is more useful, one which accounts for all classes rather than
only pairwise comparisons.

The imperfections in Figure 3 also exemplify some of the
challenges of using NPC. For example, because NPC is a
global measure and relies only on the histogram of grayscale
values (discarding spatial information), changes in brightness
across a page, such as those from uneven lighting or dirt, can

result in a lower multi-class NPC when that may not be desired
or expected.

Finally, the NPC value also heavily depends on the labeled
pixels. While labeling can take time, usually only a small
number of pixels are needed from each class. This labeling
also allows a user to adapt the measure to a particular task.

VI. CONCLUSION

Potential contrast is an image contrast and quality measure
that relies on task-dependent labels. We introduce a scaled
version, normalized potential contrast (NPC), that is commen-
surate across image formats and applications, which retains
many of the desirable properties of potential contrast.

We prove equalities that support different interpretations
of NPC and show it is equivalent to the total variation
distance on the probability distributions of sampled pixels,
allowing generalization to continuous domains. One of the
other equivalences allows us to define NPC when there are
more than two classes, namely multi-class NPC.

Such generalizations enable applications to a much broader
array of contexts, including where potential contrast has al-
ready found success. We showcase an example with three
classes in a music manuscript exhibiting bleedthrough, demon-
strating how multi-class NPC can provide a valuable, inter-
pretable, and task-adaptive image quality and contrast measure
in cultural heritage and beyond.
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