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Abstract—The separation of an optical remote sensing image
into water and land areas is a complex yet essential process for
the extraction of coastlines and subsequent detection of objects.
The accurate delineation of water-land boundaries based on
optical remote sensing imagery represents a significant challenge
to the conventional segmentation techniques. The advancement
of deep learning has resulted in the dominance of convolu-
tional neural networks (CNNs) in semantic segmentation, largely
due to their robust local information extraction abilities. This
paper presents the results of three models based on the U-
Net architecture, for the segmentation of water and land areas
based on optical satellite imagery using a publicly available
dataset, namely the Sentinel-2 NOAA Water Edges Dataset
(SNOWED). The paper proposes the optimisation of models using
various loss functions, including cross-entropy, Sørensen-Dice,
local regularisation, structured edge information and their the
appropriate configurations. During the course of the research,
the use of the Intersection over Union (IoU) metric yielded
highly competitive results, with the best result obtained being
96.05%. The optimal model was developed using a loss function
comprising two components: local regularisation and structured
edge information.

Index Terms—water–land segmentation, optical image, loss
function, deep learning, U-Net.

I. INTRODUCTION

In the context of remote sensing imagery, the objective
of water–land segmentation is to accurately delineate the
boundaries between the nearshore region and the land. The
segmentation result is of paramount importance for the subse-
quent extraction of the coastline [1] and the detection of ships
[2].

The utilisation of remote sensing approaches enhanced by
deep learning is being developed for the monitoring of water
bodies, due to the availability of publicly accessible data from
programmes such as Copernicus [3] and Landsat [4]. The
literature proposes methods that employ deep convolutional
neural networks (DCNNs) for the semantic segmentation of
satellite imagery, with the objective of identifying surface
water regions and delineating water bodies [5]–[7]. The papers
[5], [6] presented high-level results of the segmentations ob-
tained. However, these studies were carried out only on private
and unreleased datasets, which greatly limits the possibility of
verifying the results obtained.

While DCNN has been shown to enhance water body extrac-
tion, there are still limitations to its capabilities. Convolutions

have a restricted receptive field and are unable to model global
information. Convolution gathers data from neighbouring pix-
els, which limits the accuracy of semantic segmentation by
neglecting inter-pixel relationships. The integration of global
information allows for more accurate pixel classification.
Some researchers have proposed the incorporation of attention
mechanisms with CNNs to address the limitations of these net-
works [7], [8]. Attention mechanisms assist in the weighting
of salient features and have been employed to enhance water
body extraction. A detailed paper on the development of image
segmentation using DCNNs can be found in [8].

The transformer is a deep learning architecture [9]. It mod-
els the relationship between input tokens and deals with long-
range dependencies. Unlike CNN, the Transformer processes
one-dimensional sequence features from two-dimensional im-
age features. The standard Transformer structure is composed
of layer normalisation, multi-head self-attention, a multilayer
perceptron, and skip connections. A survey of the extant
literature reveals that certain studies have yielded satisfactory
results with Transformer, although it should be noted that
these are mostly based on extensive pre-training [10]. A
comprehensive survey and evaluation of various segmentation
methods employing Transformers can be found in [11].

In [12], the authors embedded MixFormer [13] into the U-
Net model [14] and proposed a hybrid MixFormer architecture,
designated as MU-Net. The MU-Net model [12] employs a
combination of CNN and MixFormer to facilitate the capture
of both local and global contextual information present in
images. MixFormer is a Transformer structure that has been
modified to enhance its capacity to capture global contextual
information.

A recently annotated SNOWED dataset [15] of optical
satellite imagery has been released. This dataset comprises
4334 images and it appears to be a valuable resource for
training DCNN models to perform land-water segmentation.
The paper [16] presents the results of a study to segment the
river channel of the Po in Northern Italy using the SNOWED
dataset, obtaining a metric of IoU=96.7%, which is the best
and, at the time of writing, the only result based on the
literature. The authors of the paper [16] used the basic U-Net
model [14] in their research.

In this research, an attempt was made to obtain similar IoU
metric results, which were presented in the paper [16], based
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on the SNOWED dataset. However, this was not possible
using the basic U-Net model [14], and cross-entropy as a
loss function. Therefore, further research was carried out to
obtain the best possible results, and for this purpose three
distinct state-of-the-art approaches [5], [6], [12] were used.
It should be emphasised that the most desirable in practice
are universal classifiers that enable accurate segmentation of
water-land areas for a wide class of cases and conditions
at the water-land interface, e.g. taking into account sandy,
stony, rocky coasts as well as shallows and visible waves
on the water, river mouths and the presence of small, closed
water reservoirs in the vicinity of the coast. Consequently, the
present research concentrated on considering the most exten-
sive possible range of cases, including both visible man-made
infrastructure and non-urbanised areas. It is noteworthy that
the SNOWED dataset contains images for the aforementioned
cases and conditions that occur in water-land areas.

In summary, the main contributions of our research are
as follows: (1) An optimisation of the solutions presented
in the papers [5], [6], [12] on the SNOWED dataset was
performed, taking into account various loss functions including
cross-entropy, Sørensen-Dice, local regularisation, structured
edge information. The loss functions employed facilitated the
acquisition of both global and local information concerning
the image pixels, a factor that is of great significance in
achieving high segmentation accuracy. The optimal results
were obtained by employing the sum of two loss functions in
the following configurations: (a) cross-entropy and Sørensen-
Dice, (b) local regularisation and structured edge information.
(2) During the course of the research, the use of the IoU
metric yielded highly competitive results, with the best re-
sult obtained being 96.05%. The most optimal results were
achieved using the MU-Net model [12], which employed
a sum of two loss functions, namely local regularisation
and structured edge information. (3) Based on the results
obtained from the evaluation metrics used, an investigation
was conducted into the possibility of optimising the number
of channels in the subsequent input layers of the models used.
The study concluded that models with a simplified architecture
can achieve results comparable to the best solutions.

II. MATERIALS AND METHODS

A. Data

The SNOWED dataset [15], which was utilised in the
present study, comprises 256 × 256 pixel resolution images
of land and coastal areas. These images were obtained by
the European Space Agency’s (ESA) Sentinel-2 satellite. The
dataset also includes ground-truth masks, in which water
and land areas are assigned binary values. The SNOWED
dataset contains 4334 images in total. During the course of
the study, 2730 images were utilised as a training set, 1171
and 433 images were employed to validate and test the models,
respectively.

Fig. 1 illustrates examples of satellite images from
the SNOWED dataset, accompanied by their corresponding

ground-truth masks. The colour yellow is employed to indicate
water areas, while the colour purple is used for land areas.

B. Deep learning models used

Three state-of-the-art models were employed in the course
of this research, namely: the Structured Edge Network for Sea-
Land Segmentation, (SeNet) [5]; the Deep Fully Convolutional
Network for Pixel-level Sea-Land Segmentation (DeepUNet)
[6]; and the Embedding MixFormer into Unet to Extract Water
Bodies from Remote Sensing Images (MU-Net) [12].

Fig. 1. Example satellite images from the SNOWED dataset [15]. The first
and second columns represent the source image and the ground-truth mask,
respectively.

1) SeNet model: The SeNet model [5] is based on the U-
Net architecture [14], which is a widely used approach in
the field of computer vision. The U-Net is a deep learning
architecture that was originally developed for the purpose of
semantic segmentation of medical images. The U-Net model
comprises two paths, which collectively resemble the letter
”U” in a diagrammatic representation. These are the contrac-
tion and expansion paths, which respectively correspond to the
encoder and decoder components. The SeNet model introduces
branching at the final layer, resulting in a network that is
capable of performing two distinct tasks. One output of the
network is responsible for image segmentation, while the other
output is focused on edge detection. Consequently, the SeNet
is capable of simultaneously performing sea-land segmentation
and edge detection. Furthermore, the SeNet promotes the local
regularised loss, which serves to reduce misclassification.

2) DeepUNet: The DeepUNet model [6] also draws its
inspiration from the U-Net architecture [14]. The authors ex-
tended the U-Net model by incorporating DownBlocks (com-
prising two convolution layers concatenated through a ReLU
layer) into the contracting path and UpBlocks (comprising two
convolutional layers followed by an upsampling layer) into the
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expansion path. The upsampled outputs are transformed into
high-resolution feature maps, which are then combined by a
subsequent convolutional layer. In the DownBlock layers, the
inputs to a convolutional layer are combined with the outputs
of the layer using an addition operation. The same strategy is
employed in the UpBlock layers.

3) MU-Net: The MU-Net model [12] is a hybrid Mix-
Former architecture [13], in which the MixFormer module
is embedded within the U-Net to enable the capture of both
local and global contextual information present in images. To
obtain feature maps at different scales, the original image was
downsampled using a max-pooling operation. The extraction
of local information from deep features was first achieved
using convolutional layers, with the aim of accurately identify-
ing water features in complex backgrounds. Global contextual
information was then modelled using a MixFormer block to
extract deeper semantic features of water bodies. The features
generated by the encoder were then refined by the Attention
Mechanism Module (AMM). The AMM suppresses non-water
features and noise by weighting features related to water
bodies. Finally, bilinear interpolation and skip connection were
utilised to recover the resolution and detail information of
the image, thereby producing the final water body extraction
results.

C. Loss functions

Cross-entropy (CE) loss [17], a widely employed loss func-
tion, involves the comparison of the predicted class with the
target class. This is achieved by examining each pixel in the
image. However, preliminary experiments demonstrated that
the CE loss function imposes limitations on learning potential
when features are complex, small or linear. Consequently,
subsequent experiments employed several additional loss func-
tions. One such loss function is the Sørensen-Dice (SD) loss
[17], which is based on a metric for model evaluation known
as the Sørensen-Dice coefficient.

LCE = −
t∑

i=1

yilog(pi) (1)

LSD = 1−
∑t

i=1 yipi + ϵ∑t
i=1 yi + pi + ϵ

(2)

where t is the total number of pixels, yi is the ground-truth
value of the pixel, and pi is the predicted probability value of
the pixel returned by the model, and ϵ is a small value equal
to 10−5 to ensure that division by zero does not occur. It is
possible to define an alternative loss function on the basis of
(1) and (2), expressed by their sum.

LCE+SD = α · LCE + β · LSD (3)

Preliminary studies have confirmed that the use of the sum
of two different loss functions, expressed by (3), can produce
better results than the use of single loss functions based on
(1) or (2). We set α = 1.0, β = 0.7 in our experiments.

It is evident that the topography of land regions is frequently
characterised by intricate texture and intensity distribution.

This is attributed to the interplay of sunlight, altitude, and the
presence of objects on the ground. Furthermore, the presence
of waves in maritime regions can impede the attainment of
optimal segmentation results, thereby exacerbating the chal-
lenges associated with accurate delineation. The softmax loss
employed in semantic segmentation is confined to pixel-wise
loss, disregarding the interrelationship between adjacent pixels
that exhibit analogous colour values. In order to enhance the
utilisation of the local relationship between adjacent pixels, the
local regularised loss was adopted [5], [18]. The loss function
can be expressed as follows:

LSeg =
1

N

N∑
i=1

{
− logpli,i +

λ

2

∑
j∈Nb(i)

[(p0,i − p0,j)
2

+(p1,i − p1,j)
2]e

−(xi−xj)
2

σ

}
(4)

where li denotes the ground-truth label of pixel i, with the
value of li set to 1 for land pixels and 0 for sea pixels; pli,i
represents the probability of the ground-truth label assigned
to i; N is the total number of points in the batch, while xi

is the colour value of i; Nb(i) refers to the eight neighbours
of i. The variance term, denoted by σ, is calculated as the
average squared distance between all neighbouring pixels in
each image, i.e. σ = ⟨(xi − xj)

2⟩. The second term in (4)
forces neighbouring pixels with similar colour values to have
similar label probabilities. The value of λ is important for
the segmentation results. A large value of λ leads to under-
segmentation and reduces the edge accuracy. Satisfactory
results on the validation set are obtained when λ is in the
range [10, 50].

In the context of certain sophisticated structures, such as
wharfs and ships, the segmentation network frequently en-
counters difficulties in achieving precise results in the vicinity
of the shoreline and terrestrial boundaries. Moreover, in the
absence of a discrete point between adjacent sea and land edge
pixels, it is necessary to consider two sets of edges: E(L) is
the set of edges in the land area, while E(S) denotes the set
of edges in the water area. The edge-based loss function is
defined as follows:

LEdge

= − 1

N

{ ∑
i∈E(L)

∑8
j=1 SNi(j)[logp1,i + log(1− p1,i(j))]∑8

j=1 SNi(j)

+
∑

i∈E(S)

∑8
j=1 SNi(j)[log(1− p1,i) + logp1,i(j)]∑8

j=1 SNi(j)

+
∑

i/∈E(L)∪E(S)

(log(1−
8∑

j=1

| p1,i − p1,i(j) |
8

)

}
(5)

The classification of a pixel as an edge is determined by the
presence of at least one of its eight neighbours exhibiting a
distinct class. The notation SNi(j) employed in (5) denotes a
function that returns SNi(j) = 1 when i is an edge and its j-th
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neighbour belongs to a different class, otherwise SNi(j) = 0.
The symbol p1,i denotes the probability that pixel i belongs to
class 1, while p1,i(j) denotes the probability that the pixel j-
th neighbour belongs to this class. Given that the probabilities
of a given pixel belonging to each class add up to unity (i.e.
p0 + p1 = 1), it is possible to use only one of them. In this
case, p1 is used.

Finally, the loss function is expressed as the sum of (4) and
(5)

LSeg+Edge = LSeg + LEdge (6)

The integration of segmentation and edge detection facilitates
the network in recognising distinguishable edge features.

If a different loss function is used in a particular model,
the only modification required is to add an additional output
layer, or two additional output layers if the sum of two loss
functions is used, as in (3) and (6). This can be implemented
for different models, i.e.: SeNet [5], DeepUNet [6] and MU-
Net [12].

III. EXPERIMENTAL RESULTS AND DISCUSSION

The SNOWED dataset was utilised in the course of the
experiments conducted. Details pertaining to the division of
this dataset into learning, validation and test subsets are
presented in Section II-A. The experiments investigated the
effect of utilising the loss function given by (3) and (6). The
SeNet [5], DeepUNet [6] and MU-Net [12] models were tested
in both basic configurations and in configurations with a half-
reduced number of filters in subsequent convolution layers,
and thus also with a half-reduced number of input channels in
subsequent layers. These configurations are presented in Table
I together with the results obtained for the SNOWED test set.

The quantitative evaluation of image segmentation is con-
ducted using standard metrics, including F1-score and the
IoU. The IoU measure can be calculated for each of the
classes, so in the case of the water and land segmentation,
the appropriate labels used were IoUwater, for water areas,
and IoUland for land areas, in addition, the average of these
two values, denoted IoUmean, was included.

Considering the results in Table I, it can be observed that
training the SeNet model on the SNOWED dataset using
the loss function LSeg+Edge (6) produces extremely poor
results, although using this model in combination with the loss
function LCE+SD (3) or using the loss function LSeg+Edge

(6) with the DeepUNet model produces very good results. In
general, the values of the IoUwater metric are higher than
the IoUland metric, indicating superior segmentation of water
areas by the models utilised. The best results for each metric
are obtained by the configuration numbered 10, which is the
MU-Net model trained with the loss function LSeg+Edge (6).
This configuration achieves the highest values of the IoUmean

metric, which is 96.05%. Example results of the MU-Net
model with configuration No. 10, together with source images
and ground-truth images, are shown in Fig. 2.

It is evident from the results obtained after halving the
number of filters utilised in the subsequent convolution layers

that there is only a slight decrease of approximately 1% in
both the F1-score and the IoUmean metrics. However, for the
SeNet model and the applied loss function LSeg+Edge (6),
a substantially larger difference was observed, reaching up
to 20% for the IoU metric and 8% for the F1-score metric.
Moreover, it has been observed that for the DeepUNet and
MU-Net models with configurations in which the number of
filters was reduced and the loss function LSeg+Edge (6) was
employed, almost identical metric results were obtained as for
the basic configuration with the number of filters unchanged
and the loss function LCE+SD used (3). In light of the results
obtained in Table I, it can be concluded that optimising the
models to reduce their size is a worthwhile endeavour, since
the results obtained are close to the maximum.

Experiments were performed using the PyTorch deep learn-
ing framework and the CUDA library on a PC with AMD
Ryzen 7 5800@3.8 GHz, 16 GB RAM and NVIDIA RTX
3070ti graphics card, under Windows 11. Table II shows the
values of the four hyperparameters, namely number of epochs
and batch size, learning rate and optimiser used for the SeNet,
DeepUnet and MU-Net models.

Fig. 2. Visualised segmentation results. The first and second columns show
the source image and the ground-truth, respectively. Column 3 shows the
segmentation results obtained using the MU-Net model [12] with configuration
no. 10, based on Table I.
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TABLE I
THE RESULTS OF THE MODELS THAT WERE TRAINED ACCORDING TO THE CONFIGURATIONS USED IN THE LOSS FUNCTION EXPERIMENTS, LCE+SD (3)

AND LSeg+Edge (6). THESE WERE OBTAINED USING THE SNOWED TEST SET. THE BEST RESULTS ARE SHOWN IN BOLD.

No. Model No. of channels in subsequent layer inputs Loss function F1-score IoUwater IoUland IoUmean

1 SeNet [4, 16, 32x2, 64x7, 32x2, 16x2] LSeg+Edge 73.72% 64.38% 12.56% 38.47%
2 SeNet [4, 32, 64x2, 128x7, 64x2, 32x2] LSeg+Edge 81.74% 76.39% 40.2% 58.30%
3 SeNet [4, 16, 32x2, 64x7, 32x2, 16x2] LCE+SD 95.69% 95.51% 90.82% 93.16%
4 SeNet [4, 32, 64x2, 128x7, 64x2, 32x2] LCE+SD 96.69% 96.28% 92.61% 94.45%
5 DeepUNet [4, (16, 32)x7, (32, 16)x7, 32] LSeg+Edge 96.03% 95.52% 90.82% 93.17%
6 DeepUNet [4, (32, 64)x7, (64, 32)x7, 32] LSeg+Edge 96.71% 96.43% 92.66% 94.54%
7 DeepUNet [4, (16, 32)x7, (32, 16)x7, 32] LCE+SD 95.74% 95.4% 91% 93.2%
8 DeepUNet [4, (32, 64)x7, (64, 32)x7, 32] LCE+SD 96.55% 96.3% 92.63% 94.46%
9 MU-Net [4, 32, 64, 128, 256, 512, 256, 128, 64, 32] LSeg+Edge 97.27% 96.98% 93.9% 95.44%

10 MU-Net [4, 64, 128, 256, 512, 1024, 512, 256, 128, 64] LSeg+Edge 97.71% 97.39% 94.71% 96.05%
11 MU-Net [4, 32, 64, 128, 256, 512, 256, 128, 64, 32] LCE+SD 96.29% 96.41% 92.65% 94.53%
12 MU-Net [4, 64, 128, 256, 512, 1024, 512, 256, 128, 64] LCE+SD 97.4 % 97.01% 93.94% 95.52%

TABLE II
THE VALUES OF FOUR HYPERPARAMETERS, NAMELY THE NUMBER OF

EPOCHS, BATCH SIZE, LEARNING RATE, LOSS FUNCTION AND OPTIMISER,
ARE PRESENTED FOR THE SENET [5], DEEPUNET [6] AND MU-NET [12]

MODELS.

Model No. of epochs Batch size Learning rate Optimiser
SeNet 1000 4 0.00001 Adam

DeepUNet 100 11 0.0001 Adam
MU-Net 100 10 0.001 Adam

IV. CONCLUSION

This paper presented the results of three models based on the
U-Net architecture for segmenting water and land areas from
optical satellite images using the publicly available SNOWED
dataset. During the research, the possibility of using different
loss functions was analysed in detail, and optimal results
were obtained by using the sum of two loss functions in the
following configurations: (a) cross-entropy and Sørensen-Dice,
(b) local regularisation and structured edge information. The
most optimal results were obtained with the MU-Net model
using a sum of two loss functions, namely local regularisation
and structured edge information. The F1-score and IoUmean

metrics results for this model were 97.71% and 96.05%, re-
spectively. The research also reached the interesting conclusion
that half-reduced number of filters in subsequent convolution
layers in the DeepUnet and MU-Net models allows results
close to the maximum values. It is therefore recommended
that further research be conducted in order to optimise the
models by reducing their size even further, thus facilitating
their storage on devices with limited memory. This could also
potentially improve the generalisation of the models, leading
to higher metric values in the test set and faster inference.
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